Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Méthodes numériques et éléments de programmation

Guy Munhoven

Institut d'Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 eMail: Guy.Munhoven@ulg.ac.be Tél.: 04-3669771

http://www.astro.ulg.ac.be/~munhoven/fr/cours

16 septembre 2014

Plan du cours 2014-2015

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Cours théoriques

16-09-2014 Méthodes numériques pour équations différentielles ordinaires : introduction

- méthodes simples
- notions théoriques
- méthodes multi-pas

22-09-2014 Méthodes de Runge-Kutta; Contrôle du pas, équations raides

22-09-2014 Fortran 95 : bases

4-5 cours Fortran 95 : suite et compléments

Supports de cours

Textbooks

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Mark H. Holmes. Introduction to Numerical Methods in Differential Equations. Texts in Applied Mathematics, vol. 52, Springer New York, 2007.

URL: http://dx.doi.org/10.1007/978-0-387-68121-4

Alfio Quarteroni, Riccardo Sacci et Fausto Saleri. Méthodes Numériques. Algorithmes, analyse et applications. Springer Milan, 2007.

URL: http://dx.doi.org/10.1007/978-88-470-0496-2

Les deux ouvrages sont disponibles sous forme électronique sur depuis le domaine ulg.ac.be, directement ou via proxy – vous devez être logués avec votre identifiant ULg.

Prérequis

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Prérequis

- Analyse mathématique et calcul matriciel
 - séries de Taylor, ...
 - transformées de Fourier
 - matrices, valeurs propres, ...
- Calcul numérique de base
- Systèmes linéaires
 - Elimination de Gauss, factorisation LR, ...
 - Méthodes itératives (Jacobi, Gauss-Seidel, ...)
- Résolution d'équations non-linéaires (y inclus systèmes)
 - Point fixe, bisection, ...
 - Newton-Kantorovich
- Quadrature numérique

Equations différentielles ordinaires (E.D.O.)

Ordinary Differential Equations (ODE)

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Equations différentielles : A quoi bon?

 Beaucoup de phénomènes physiques décrits à l'aide d'équations différentielles

Pourquoi se soucier de méthodes numériques alors qu'il existe des solutions analytiques ?

- Equations différentielles à solution analytique sont des exceptions
- Solutions analytiques parfois peu utiles en pratique

Exemples d'E.D.O. : Désintégration radioactive ODE Examples : Radioactive Decay

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist La loi de décroissance radioactive décrit l'évolution de la quantité de substance N(t) par

$$\frac{dN}{dt} + \lambda N = 0$$

sachant que la quantité initiale vaut

$$N(t_0) = N_0$$
.

Equation différentielle ordinaire linéaire du premier ordre

Exemples d'E.D.O. : Deuxième loi de Newton

ODE Examples : Newton's Second Law

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Nous avons

$$m\ddot{x} = F(t, x, \dot{x})$$

et

$$x(t_0) = x_0 \quad \text{et} \quad \dot{x}(t_0) = v_0$$

où la force F dépend éventuellement du temps t, de la position x et de la vitesse $v = \dot{x}$.

Equation différentielle ordinaire du second ordre

- *linéaire* si F est linéaire en x et \dot{x}
- non-linéaire sinon

Exemples d'E.D.O. : Deuxième loi de Newton

ODE Examples : Newton's Second Law

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Exemple: Oscillateur harmonique amorti

$$m\ddot{x} = -c\dot{x} - kx$$

assorti des conditions initiales appropriées

Transformation d'E.D.O. d'ordre m > 1

Transformation of ODEs of order m > 1

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist L'équation de l'oscillateur harmonique amorti, du second ordre peut être reformulée en un système d'équations du premier ordre en définissant

$$x_1 = x$$

$$x_2 = \dot{x}$$

Il vient alors:

$$\dot{x_1} = x_2
\dot{x_2} = \frac{1}{m}(-cx_2 - kx_1)$$

avec

$$x_1(t_0) = x_0$$

$$x_2(t_0) = v_0.$$

Transformation d'E.D.O. d'ordre m > 1

Transformation of ODEs of order m > 1

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Sous forme vectorielle.

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

οù

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{f}(t, \mathbf{x}) = \begin{pmatrix} x_2 \\ \frac{1}{m}(-cx_2 - kx_1) \end{pmatrix} \text{ et } \mathbf{x}_0 = \begin{pmatrix} x_0 \\ v_0 \end{pmatrix}$$

Généralisation triviale à une E.D.O. d'ordre m quelconque

Transformation d'E.D.O. non-autonomes

Transformation of non autonomous ODEs

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Une équation différentielle non-autonome (i.e., avec second membre dépendant explicitement de t)

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

peut être reformulée sous forme autonome (i.e., à second membre indépendant de t)

$$\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}), \quad \mathbf{y}(t_0) = \mathbf{y}_0$$

en définissant

$$\mathbf{y} = \left(egin{array}{c} \mathbf{x} \\ t \end{array}
ight), \quad \mathbf{g} = \left(egin{array}{c} \mathbf{f} \\ 1 \end{array}
ight), \quad ext{et} \quad \mathbf{y}_0 = \left(egin{array}{c} \mathbf{x_0} \\ t_0 \end{array}
ight)$$

Méthodes obtenues par différentiation numérique Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Problème donné:

$$\frac{dy}{dt} = f(y)$$
, pour $t \in [0, T]$

avec

$$y(0) = y_0$$

Cinq étapes :

1 Choisir une grille de discrétisation

$$t_0 = 0, t_1, \ldots, t_M = T.$$

lci, nous adoptons une grille où les t_i sont équidistants :

$$t_i = jk$$
, pour $j = 0, 1, \dots, M$

2 Evaluer l'équation différentielle au point $t=t_j$:

$$y'(t_i) = f(y(t_i))$$

Méthodes obtenues par différentiation numérique

Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Cinq étapes (suite) :

Remplacer la dérivée y' par une formule aux différences finies, utilisant les valeurs de y à un ou plusieurs points de la grille, par exemple :

$$y'(t_j) = \frac{y(t_{j+1}) - y(t_j)}{k} + \tau_j,$$

où

$$\tau_j = -\frac{k}{2}y''(\eta_j)$$

est l'erreur de troncature, et η_j un point de $[t_j, t_{j+1}]$

Méthodes obtenues par différentiation numérique Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Cinq étapes (suite) :

3 Après insertion dans l'équation :

$$y(t_{i+1}) = y(t_i) - k\tau_i + kf(y(t_i))$$

4 Laisser tomber l'erreur de troncature et remplacer $y(t_j)$ par y_i , etc. :

$$y_{j+1} = y_j + kf(y_j)$$

Méthode d'Euler explicite (progressive)

Méthodes obtenues par différentiation numérique

Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Cinq étapes (suite) :

4 A noter que :

$$\lim_{k\to 0}\tau_j=0$$

Méthode consistante

- 5 Vérifier la stabilité :
 - \blacksquare y_0 connue exactement
 - y_1 seulement approximation de $y(t_1)$
 - différence entre y_j et $y(t_j)$ affectée par toutes les différences en y_1, \ldots, y_{j-1}
 - Condition de *stabilité* : les erreurs successives ne doivent pas s'amplifier

A-stabilité d'une solution numérique d'E.D.O.

A-Stability of a numerical ODE solution

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Il existe différentes manières d'exprimer quantitativement le concept de stabilité.

L'A-stabilité utilise une équation test (décroissance radioactive)

$$y' = -\lambda y$$
, $(\lambda > 0)$, et $y(0) = y_0$,

qui admet comme solution $y(t) = y_0 \exp(-\lambda t)$. Pour cette équation, la méthode d'Euler explicite fournit

$$y_{j+1} = (1 - \lambda k) y_j$$

et nous avonc donc :

$$y_j = (1 - \lambda k)^j y_0$$

A-stabilité d'une solution numérique d'E.D.O.

A-Stability of a numerical ODE solution

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I)

Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist La solution de l'équation test décroît vers 0 pour $t \to +\infty$, ce qui inspire la définition *tentative et préliminaire* suivante :

Définition

Une méthode est dite A-stable si son application à l'équation

$$y' = -\lambda y$$
, $(\lambda > 0)$, et $y(0) = y_0$

fournit une solution qui reste bornée, quelque soient les valeurs de k et de λ . Si la solution ne reste bornée que pour des k suffisamment petits, alors la méthode est qualifiée de conditionnellement A-stable, sinon elle est instable.

A-stabilité de la méthode d'Euler explicite

A-Stability of the Forward Euler Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes

d'Adams

Concepts
théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist La méthode d'Euler explicite est A-stable pour

$$|1-\lambda k|\leq 1$$
,

c'est-à-dire pour

$$-1 \le 1 - \lambda k \le 1.$$

Il faut donc que (l'inégalité à droite étant réalisée)

$$-1 < 1 - \lambda k$$

c'est-à-dire, que

$$k \leq \frac{2}{\lambda}$$
.

Ainsi, la méthode d'Euler est conditionnellement A-stable.

Méthodes obtenues par différentiation numérique

Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par

quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Autres méthodes : Méthode d'Euler implicite

$$y(t_{i+1}) = y(t_i) - k\tau_i + kf(y(t_{i+1}))$$

où $\tau_i = \frac{k}{2}y''(\eta_i)$, pour un $\eta_i \in [t_i, t_{i+1}]$

- \blacksquare implicite en y_{j+1} : évt. difficile à résoudre
- A-stabilité :

$$y_{j+1} = rac{1}{1+\lambda\,k}y_j$$
 et donc $y_j = rac{y_0}{(1+\lambda\,k)^j}.$

 y_j tend vers 0 quels que soient λ et k positifs. La méthode d'Euler implicite est A-stable.

Méthodes obtenues par différentiation numérique Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes

d'Adams

Concepts
théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Autres méthodes : Centrée explicite (saute-mouton, *leap-frog*, *explicit mid-point*)

$$y(t_{j+1}) = y(t_{j-1}) - 2k\tau_j + 2kf(y(t_j))$$

où $au_j = -rac{k^2}{6}y'''(\eta_j)$, pour un $\eta_j \in [t_{j-1}, t_{j+1}]$

- explicite, à deux pas
- \bullet τ_i d'ordre 2 : méthode meilleure?

Méthodes obtenues par différentiation numérique

Methods Obtained by Numerical Differentiation

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation

A-stabilité (I)

Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Autres méthodes : saute-mouton

■ A-stabilité :

$$y_{j+1} = y_{j-1} - 2\lambda \, k y_j$$

Rechercher une solution de la forme $y_j = s^j$:

$$s^2 + 2\lambda ks - 1 = 0.$$

Les solutions sont $s_{\oplus/\ominus} = -\lambda \, k \pm \sqrt{1 + \lambda^2 k^2}$. La solution générale y_i s'écrit alors

$$y_j = c_{\ominus} s_{\ominus}^j + c_{\oplus} s_{\oplus}^j,$$

 c_{\oplus} et c_{\ominus} étant deux constantes.

Comme $s_{\ominus}<-1$ pour $\lambda\,k>0$, $|s_{\ominus}|>1$: la méthode saute-mouton n'est pas A-stable.

Méthodes obtenues par quadrature numérique Methods Obtained by Numerical Quadrature

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I)

Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Problème donné :

$$\frac{dy}{dt} = f(y)$$
, pour $t \in [0, T]$, avec $y(0) = y_0$

Cinq étapes :

- 1 Choisir une grille de discrétisation
- 2 Intégrer l'équation différentielle entre deux points de la grille, p.ex., t_j et t_{j+1} :

$$\int_{t_j}^{t_{j+1}} y'(t_j) dt = \int_{t_j}^{t_{j+1}} f(y(t)) dt.$$

Donc:

$$y(t_{j+1})-y(t_j)=\int_{t_i}^{t_{j+1}}f(y(t))dt.$$

Méthodes obtenues par quadrature numérique

Methods Obtained by Numerical Quadrature

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I)

Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Cinq étapes (suite) :

Remplacer l'intégrale de f par une formule aux différences finies, comme par exemple, la formule des trapèzes

$$y(t_{j+1}) - y(t_j) = \frac{k}{2} [f(y(t_{j+1})) + f(y(t_j))] + O(k^3)$$

 $O(k^3)$ est une fonction telle que $\lim_{k\to 0} (O(k^3)/k^3)$ est finie.

Méthodes obtenues par quadrature numérique Methods Obtained by Numerical Quadrature

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O. Méthodes par

A-stabilité (I)

Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Cinq étapes (suite) :

4 Laisser tomber le terme $O(k^3)$ et remplacer $y(t_j)$ par y_j , etc. :

 $y_{j+1} = y_j + \frac{k}{2}(f_{j+1} + f_j)$

Méthode des trapèzes, implicite

5 A-stabilité : à déterminer comme exercice

Délai: 22 septembre 2014

Méthodes obtenues par quadrature numérique

Methods Obtained by Numerical Quadrature

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Autres procédures pour quadrature numérique :

Approximation de f(y(t)) sur $[t_j,t_{j+1}]$ par un polynôme de degré $q \ge 0$ passant par

- $(t_{j-q}, f(y_{j-q})), \dots, (t_j, f(y_j))$ méthode d'Adams-Bashforth (explicite)
- $(t_{j-(q-1)}, f(y_{j-(q-1)})), \dots, (t_{j+1}, f(y_{j+1}))$ méthode d'Adams-Moulton (implicite)

Méthode d'Adams-Bashforth (q = 2)

Adams-Bashforth Method (q = 2)

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

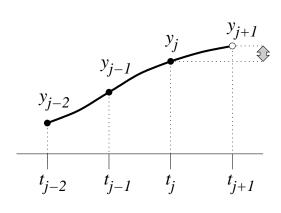
Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

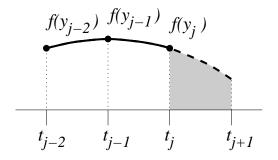
Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas





Méthodes d'Adams-Bashforth

Adams-Bashforth Method

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Méthodes d'Adams-Bashforth

$$q$$
 Itération pour calculer y_{j+1}

$$0 y_{i+1} = y_i + kf_i (Euler explicite)$$

1
$$y_{j+1} = y_j + \frac{k}{2}(3f_j - f_{j-1})$$

2
$$y_{j+1} = y_j + \frac{k}{12}(23f_j - 16f_{j-1} + 5f_{j-2})$$

3
$$y_{j+1} = y_j + \frac{k}{24}(55f_j - 59f_{j-1} + 37f_{j-2} - 9f_{j-3})$$

4
$$y_{j+1} = y_j + \frac{k}{720} (1901f_j - 2774f_{j-1} + 2616f_{j-2} - 1274f_{j-3} + 251f_{j-4})$$

5
$$y_{j+1} = y_j + \frac{k}{1440} (4277f_j - 7923f_{j-1} + 9982f_{j-2} - 7298f_{j-3} + 2877f_{j-4} - 475f_{j-5})$$

Erreur de troncature (locale) : $O(k^{q+1})$

Méthode d'Adams-Moulton (q = 2)

Adams-Moulton Method (q = 2)

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

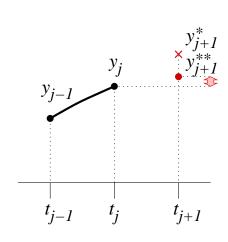
Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

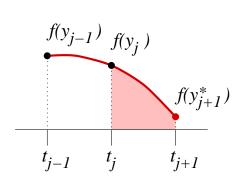
Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas





- y_{i+1}^* valeur test pour itérer
- y_{j+1}^{**} valeur calculée à partir de $f(y_{j+1}^*)$

Méthode d'Adams-Moulton (q = 2)

Adams-Moulton Method (q = 2)

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

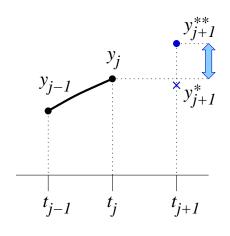
Méthodes d'Adams

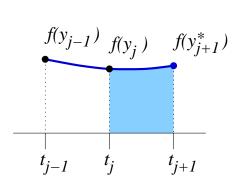
Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist





- y_{i+1}^* valeur test pour itérer
- y_{i+1}^{**} valeur calculée à partir de $f(y_{i+1}^*)$

Méthode d'Adams-Moulton (q = 2)

Adams-Moulton Method (q = 2)

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

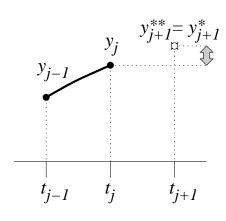
Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

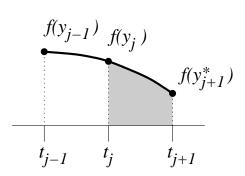
Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas





- y_{i+1}^* valeur test pour itérer
- y_{i+1}^{**} valeur calculée à partir de $f(y_{i+1}^*)$

Méthodes d'Adams-Moulton

Adams-Moulton Methods

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Méthodes d'Adams-Moulton

$$q$$
 Itération pour calculer y_{j+1}

0
$$y_{i+1} = y_i + kf_{i+1}$$
 (Euler implicite)

1
$$y_{j+1} = y_j + \frac{k}{2}(f_{j+1} + f_j)$$
 (Trapèzes)

2
$$y_{j+1} = y_j + \frac{k}{12} (5f_{j+1} + 8f_j - f_{j-1})$$

3
$$y_{j+1} = y_j + \frac{k}{24}(9f_{j+1} + 19f_j - 5f_{j-1} + f_{j-2})$$

4
$$y_{j+1} = y_j + \frac{k}{720}(251f_{j+1} + 646f_j - 264f_{j-1} + 106f_{j-2} - 19f_{j-3})$$

5
$$y_{j+1} = y_j + \frac{k}{1440} (475f_{j+1} + 1427f_j - 798f_{j-1} + 482f_{j-2} - 173f_{j-3} + 27f_{j-4})$$

Erreur de troncature (locale) : $O(k^{q+1})$

Méthodes obtenues par quadrature numérique

Methods Obtained by Numerical Quadrature

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Variations sur le même thème : Partir de

$$y(t_{j+1}) - y(t_{j-1}) = \int_{t_{j-1}}^{t_{j+1}} f(y(t)) dt$$

et utiliser un polynôme de degré $q \ge 0$ passant par

■
$$(t_{j-q}, f(y_{j-q})), \dots, (t_j, f(y_j))$$

méthode de Nyström (explicite)

Cas particulier:

q=0 o méthode saute-mouton (leap-frog, midpoint rule)

$$(t_{j-(q-1)}, f(y_{j-(q-1)})), \dots, (t_{j+1}, f(y_{j+1}))$$
méthode de Milne (implicite)

Méthodes d'Adams : Inconvénients

Adams Methods : Disadvantages

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature

Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Méthodes d'Adams :

- - **a** d'une série de Taylor en $t = t_0$ (dérivées de f requises)
 - d'une méthode d'ordre inférieur (danger d'amplification de l'erreur globale)
 - d'une méthode Runge-Kutta de même ordre (plus tard)
- \ominus Adams-Moulton implicite : f non-linéaire demande méthode itérative pour déterminer y_{j+1}
 - utiliser Adams-Bashforth de même ordre, ou d'un ordre inférieur pour initialiser l'itération

Adams-Bashforth \Rightarrow prédicteur Adams-Moulton \Rightarrow correcteur

Théorie: approfondissement

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Quelques notions théoriques

- Erreurs inhérentes à une méthode
- Consistance
- Ordre de convergence
- Convergence d'une méthode

Cadre numérique pour la résolution d'une E.D.O.

Numerical Framework for Solving an ODE

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O. Méthodes par différentiation

A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Pour une E.D.O. donnée (problème à valeur initiale—initial value problem),

$$\frac{dy}{dt} = f(y)$$
, pour $t \in [t_0, t_0 + T]$, avec $y(t_0) = y_0$,

nous considérons

- dans l'intervalle d'intégration (fixe) $[t_0, t_0 + T]$, une suite de points $\{t_{j,k} = t_0 + jk | j = 0, ..., N_k\}$, appelés noeuds, avec $N_k = \lfloor T/k \rfloor$ (partie entière de T/k)
- une méthode numérique pour générer la suite d'approximations $y_{j,k}$ de la solution de l'E.D.O. aux points $t_{j,k}$

Récursion formelle pour approximations successives Formal Recurrence for Successive Approximations

Méthodes numériques et éléments de programmation

> Guy Munhoven

numériques pour E.D.O. Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Méthodes

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist En toute généralité, la relation de récurrence utilisée pour calculer les approximations successives y_{j+1} de la solution d'une E.D.O. à l'aide d'une méthode numérique peut s'écrire formellement comme

$$y_{j+1} - Y(f, k; y_0, \dots, y_j; y'_0, \dots, y'_i, y'_{i+1}) = 0$$

Exemples:

- Euler explicite : $Y = Y(f, k; y_i) = y_i + kf(y_i)$
- Saute-mouton : $Y = Y(f, k; y_{i-1}, y_i) = y_{i-1} + 2kf(y_i)$
- Trapèzes : $Y = Y(f, k; y_j, y'_{j+1}) = y_j + \frac{k}{2}(f(y_j) + f(y_{j+1}))$

Erreurs associées à une méthode

Errors Associated with a Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs

Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Nous insérons la solution exacte de l'E.D.O., y(t), dans la relation de récurrence (replacer y_j par $y(t_j)$, y_j' par $y'(t_j)$, etc.)

$$y_{j+1} - Y(f, k; y_0, \ldots, y_j; y'_0, \ldots, y'_j, y'_{j+1}).$$

L'erreur de troncature locale au noeud t_{j+1} , dénotée $\tau_{j+1}(k)$, est alors définie par

$$k\tau_{i+1}(k) = y(t_{i+1}) - Y(f, k; y(t_0), \dots, y(t_i); y'(t_0), \dots, y'(t_{i+1})).$$

L'erreur de troncature globale, $\tau(k)$, est

$$\tau(k) = \max_{0 \le j \le N_k} |\tau_{j+1}(k)|.$$

Consistance, ordre et convergence d'une méthode Consistency, Order and Convergence of a Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist ■ Une méthode est dite *consistante* si

$$\lim_{k\to 0}\tau(k)=0.$$

■ Une méthode est qualifiée *d'ordre p* si

$$\tau(k) = O(k^p),$$

pour tout t dans l'intervalle d'intégration.

■ La méthode numérique est dite convergente si

$$\lim_{k\to 0+} \left(\max_{i=0,...,N_k} |y_{i,k} - y(t_{i,k})| \right) = 0.$$

Ordre de la méthode des trapèzes

Order of the Trapezoidal Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Exemple : Déterminer l'ordre de la méthode des trapèzes

$$y_{j+1} - y_j - \frac{k}{2}[f(y_{j+1}) + f(y_j)] = 0$$

Pour déterminer l'ordre de cette méthode :

- remplacer y_j par $y(t_j)$, y_{j+1} par $y(t_{j+1})$
- lacktriangle développer $y(t_{j+1})$ en série de Taylor
- lacktriangle développer $f(y(t_{j+1})) = y'(t_{j+1})$ en série de Taylor

$$\begin{aligned} \{y(t_j) + ky'(t_j) + \frac{k^2}{2}y''(t_j) + O(k^3)\} - y(t_j) \\ - \frac{k}{2} [\{y'(t_j) + ky''(t_j) + O(k^2)\} + y'(t_j)] \\ = O(k^3) - \frac{k}{2}O(k^2) = O(k^3) \rightarrow \textit{méthode d'ordre 2} \end{aligned}$$

Ordre et convergence de méthodes multi-pas

Order and Convergence of Multistep Methods

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Une méthode générale à s pas (aussi appelée méthode à pas liés, méthode à pas multiples ou méthode multi-pas) est définie par la récurrence

$$y_{j+1} + a_{s-1}y_j + \cdots + a_0y_{j+1-s}$$

= $k(b_s f(y_{i+1}) + \cdots + b_0 f(y_{i+1-s}))$

c'est-à-dire,

$$\sum_{m=0}^{s} a_m y_{j+1-s+m} = k \sum_{m=0}^{s} b_m f(y_{j+1-s+m})$$

où a_m, b_m $(m=0,\ldots,s)$ sont des constantes données, indépendantes de k, de j et de l'E.D.O., avec $a_s=1$ et $|a_0|+|b_0|\neq 0$

Ordre et convergence de méthodes multi-pas

Order and Convergence of Multistep Methods

Méthodes numériques et éléments de programmation

Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist ■ Méthode multi-pas à *s* pas définie par une *équation aux* différences d'ordre *s*

$$y_{j+1} + a_{s-1}y_j + \cdots + a_0y_{j+1-s} = \phi_{j+1}, \quad j = s-1, \dots$$

■ Polynômes caractéristiques :

$$ho(w) := \sum_{m=0}^s a_m w^m$$
 et $\sigma(w) := \sum_{m=0}^s b_m w^m$

- $\rho(w)$ est le polynôme caractéristique de l'équation homogène associée à l'équation aux différences
- lacktriangle caractéristiques des solutions de l'équation aux différences contrôlées par les racines de ho(w)

Ordre et convergence de méthodes multi-pas Order and Convergence of Multistep Methods

Méthodes numériques et éléments de programmation

> Guy Munhoven

numériques pour E.D.O. Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Méthodes

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

Théorême

Une méthode multi-pas à s pas est d'ordre $p \ge 1$ si et seulement s'il existe une constante $c \ne 0$ telle que

$$\rho(\xi+1) - \sigma(\xi+1) \ln(\xi+1) = c\xi^{p+1} + O(|\xi|^{p+2}).$$

Théorême (Théorême d'équivalence de Dahlquist)

Si l'erreur sur les valeurs de départ y_0, \ldots, y_{s-1} tend vers 0 lorsque k tend vers 0^+ , alors, la méthode multi-pas à s pas est convergente si et seulement si elle est d'ordre $p \geq 1$ et son polynôme caractéristique ρ obéit à la condition de racine, c.-à-d. que toutes ses racines (évt. complexes) sont de module inférieur à 1 et que celles de module égal à 1 sont simples.

Ordre et convergence de la méthode des trapèzes II

Order and Convergence of the Trapezoidal Method II

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Méthode des trapèzes : $y_{j+1} - y_j = k(\frac{1}{2}f_{j+1} + \frac{1}{2}f_j)$ Polynômes caractéristiques (2 points, t_{j+1} et t_j) :

$$\rho(w) = w - 1$$
 et $\sigma(w) = \frac{1}{2}w + \frac{1}{2}$

Ordre:

$$\begin{array}{rcl} \rho(\xi+1) & = & \xi \\ \sigma(\xi+1) \times \ln(\xi+1) & = & (\frac{1}{2}\xi+1) \times (\xi-\frac{1}{2}\xi^2+\frac{1}{3}\xi^3+O(\xi^4)) \\ & = & \frac{1}{2}\xi^2+\xi-\frac{1}{4}\xi^3-\frac{1}{2}\xi^2+\frac{1}{3}\xi^3+O(\xi^4) \\ & = & \xi+\frac{1}{12}\xi^3+O(\xi^4) \end{array}$$

Ainsi :
$$ho(\xi+1)-\sigma(\xi+1) imes \ln(\xi+1)=-rac{1}{12}\xi^3+O(\xi^4)$$

- ightarrow méthode d'ordre 2
- ightarrow convergente (w = 1 seule racine de ho(w))

Ordre et convergence de la méthode saute-mouton Order and Convergence of the Leap-Frog Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist Méthode saute-mouton : $y_{j+1}-y_{j-1}=k\,2f_j$ Polynômes caractéristiques (3 points, t_{j+1} , t_j et t_{j-1}) :

$$\rho(w) = w^2 - 1$$
 et $\sigma(w) = 2w$

Ordre :

$$\rho(\xi+1) = \xi^2 + 2\xi
\sigma(\xi+1) \times \ln(\xi+1) = 2(\xi+1) \times (\xi - \frac{1}{2}\xi^2 + \frac{1}{3}\xi^3 + O(\xi^4))
= 2\xi^2 + 2\xi - \xi^3 - \xi^2 + \frac{2}{3}\xi^3 + O(\xi^4)
= \xi^2 + 2\xi - \frac{1}{3}\xi^3 + O(\xi^4)$$

Ainsi :
$$ho(\xi+1)-\sigma(\xi+1) imes \ln(\xi+1)=rac{1}{3}\xi^3+O(\xi^4)$$

- \rightarrow méthode d'ordre 2
- \rightarrow convergente (w = 1 et w = -1 racines simples de $\rho(w)$)

Méthode à trois pas d'ordre 6

Three-step sixth order method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist

$$y_{j+1} + \frac{27}{11}y_j - \frac{27}{11}y_{j-1} - y_{j-2} = k\left(\frac{3}{11}y'_{j+1} + \frac{27}{11}y'_j + \frac{27}{11}y'_{j-1} + \frac{3}{11}y'_{j-2}\right)$$

Polynômes caractéristiques (4 points, t_{j+1} , t_j , t_{j-1} et t_{j-2}):

$$\rho(w) = w^3 + \frac{27}{11}w^2 - \frac{27}{11}w - 1$$

$$\sigma(w) = \frac{3}{11}w^3 + \frac{27}{11}w^2 + \frac{27}{11}w + \frac{3}{11}$$

Ordre:

$$\begin{array}{rcl} \rho(\xi+1) &=& \xi^3 + \frac{60}{11}\xi^2 + \frac{60}{11}\xi \\ \sigma(\xi+1) \times \ln(\xi+1) &=& \left(\frac{3}{11}\xi^3 + \frac{36}{11}\xi^2 + \frac{90}{11}\xi + \frac{60}{11}\right) \\ && \times (\xi - \frac{1}{2}\xi^2 + \frac{1}{3}\xi^3 + \dots) \\ &=& \dots \\ &=& \xi^3 + \frac{60}{11}\xi^2 + \frac{60}{11}\xi + \frac{3}{1540}\xi^7 + O(\xi^8) \end{array}$$

Ainsi : méthode d'ordre 6 (la seule à 3 pas)

Méthode à trois pas d'ordre 6

Three-step Sixth-Order Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

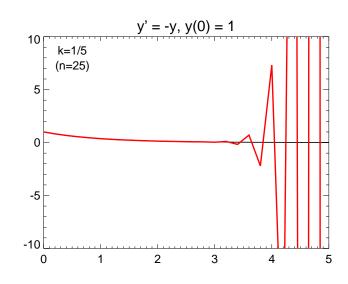
Méthodes numériques pour E.D.O.

Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas



Méthode à trois pas d'ordre 6

Three-step Sixth-Order Method

Méthodes numériques et éléments de programmation

> Guy Munhoven

Méthodes numériques pour E.D.O.

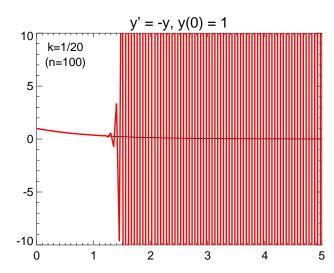
Méthodes par différentiation A-stabilité (I) Méthodes par quadrature Méthodes d'Adams

Concepts théoriques

Erreurs
Consistance, ordre et convergence

Méthodes multi-pas

Théorême de Dahlquist



 \Rightarrow Instabilités s'aggravent lorsque k diminue!

$$\rho(w) = w^3 + \frac{27}{11}w^2 - \frac{27}{11}w - 1 \simeq (w - 1)(w + 3, 136)(w + 0, 308)$$