Seafloor Sediments

Interaction with the Ocean and Early Diagenesis

Guy Munhoven

Institute of Astrophysics and Geophysics (Build. B5c) Room 0/13 eMail: Guy.Munhoven@ulg.ac.be Phone.: 04-3669771

26th March 2025

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Interest for our knowledge of the Earth System Role of Sediments in Biogeochemical Cycling

• Sediments in the present-day ocean

Plan

- Interest of sediments in Earth sciences
- Role of seafloor sediments in biogeochemical cycles
- Processes: transport and reaction
- Advection-diffusion-reaction model(s)

The Seafloor and its Sediments: a First Exploration

Guy Munhoven Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Interest for our knowledge of the Earth System Role of Sediments in Biogeochemical Cycling

The Seafloor and its Sediments: a First Exploration

The Seafloor and its Sediments: a First Exploration

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Interest for our knowledge of the Earth System Role of Sediments in Biogeochemical Cycling

The Seafloor and its Sediments: a First Exploration

The Seafloor and its Sediments: a First Exploration

Guy Munhoven Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Interest for our knowledge of the Earth System Role of Sediments in Biogeochemical Cycling

Seafloor Sediments: Biogenic Components

- Carbonates
 - distribution related to seafloor depth: deepest sediments devoid of carbonate
 - up to 90% on mid-ocean ridges
- Opal
 - abundant in the Southern Ocean (Opal Belt)
 - abundant in the Eastern Equatorial Pacific
 nutrient-rich upwelling zone
- Organic Carbon
 - generally 1-2%, but locally up to 10%
 - oxidation of organic carbon plays important role for carbonate dissolution (CO₂ source, porewater acidification)

Seafloor Sediments: Non Biogenic Components

- Clay minerals
- Chlorite \rightarrow product of continental weathering in temperate and arctic regions
- $\bullet\,$ Kaolinite and gibbsite $\to\,$ product of continental weathering in tropical regions
- Quartz → detrital material, of aeolian or glacial origin (sedimentation in coastal areas due to the activity of glaciers and ice-sheets)
- Authigenic minerals, formed in situ, by alteration of volcanic materiel (e. g., basaltic glasses) or by precipitation of biogenic material during early diagenesis (e. g., phosphate minerals)

- 1920s: different plankton assemblages depending on the climate regimes
- 1947–1948: Swedish Deep-Sea Expedition on R.V. Albatross, visiting 403 sites and retrieving of 223 undisturbed cores (≃ 15 m) from different equatorial oceans
- Chemical analyses for %CaCO₃
 by Gustaf Arrhenius (1952)
 reveal glacial-interglacial cycles

Sedimentary Archives: C. Emiliani's δ^{18} O

- Cesare Emiliani. Pleistocene Temperatures. Journal of Geology 63:538-578, 1955.
- Measurements of the evolution of the isotopic ratio ¹⁸O/¹⁶O on microfossils preserved in different cores, carried out in Harold Urey's lab (University of Chicago)
 → glacial-interglacial cycles
- Establishes the relationship between oxygen isotopes and climatic variables
- Observed variations attributed for
 - 60% to temperature changes
 - 40% to ice-volume changes

- of only four glaciations during the Pleistocene
- Tentative correlation with insolation cycles (Milankovitch)

Sedimentary Archives: N. Shackleton's δ^{18} O's

- Shackleton (1967)
 - joint ¹⁸O/¹⁶O measurements on planktonic (surface dwelling) and benthic (deep-sea dwelling) shells
 - co-variation \rightarrow ice-volume changes dominate ${
 m ^{18}O}/{
 m ^{16}O}$ variations
- Shackleton and Opdyke (1973)
 - measurement of ¹⁸O/¹⁶O and location of the last reversal of the Earth's magnetic field (Brunhes-Matuyama) on the same core (V28-238, Ontong-Java Plateau)
 - $\, \bullet \,$ about eight cycles for 700 kyr $\, \rightarrow \, \simeq \,$ 90 kyr per cycle
 - Brunhes-Matuyama revised to 780–790 kyr in the 1990s
- Hays, Imbrie and Shackleton (1976)
 - Validation of the Milankovich theory

Role of Sediments in Biogeochemical Cycling

- Active role in ocean biogeochemical cycling
- Locus of preservation and remineralization of biogenic material (carbonates, opal, organic matter, etc.)
- Concentration gradients of similar amplitude in water column and in surface sediment

Concentration Gradients: Ocean vs. Surface Sediment

Seafloor Sediments Modelling Interest for our knowledge of the Earth System Role of Sediments in Biogeochemical Cycling

Acidification: Perturbation of the Ocean-Sediment Exchange

Marine carbonates: ocean-sediment exchange

Acidification: Perturbation of the Ocean-Sediment Exchange

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Marine carbonates: ocean-sediment exchange

Preludes: geometric setting

- V arbitrary volume (fixed w/r to the coordinate system)
- S surface delimiting V
- n unitary normal vector at each point of S, external to V

Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis
Seafloor Sediments Modelling	Fundamental Equations One-Dimensional Model
General Continuity Equation	

$$\frac{\partial}{\partial t}\iiint_V \hat{C}_i \, dV = -\iint_S \hat{J}_i \cdot \boldsymbol{n} \, dS + \iiint_V \hat{R}_i^V \, dV.$$

- \hat{C}_i is the concentration of constituent *i* in units of mass per unit volume of total sediment (solid fraction + porewater);
- *Ĵ_i* is the total flux of *i* in units of mass per unit surface of total sediment per unit time;
- Â^V_i = P^V_i − D^V_i is the *net* rate of production of *i*, obtained as the difference between sources (rate of *production*, P^V_i ≥ 0) and sinks (i.e., rate of consumption and *destruction*, D^V_i ≥ 0) within V, in units of mass per unit volume of total sediment per unit time.

General Continuity Equation

- V fixed: integral and derivative may commute
- Divergence theorem

$$\iint_{S} \hat{\boldsymbol{J}}_{i} \cdot \boldsymbol{n} \, dS = \iiint_{V} \nabla \hat{\boldsymbol{J}}_{i} \, dV$$

• General equation may be rewritten as

$$\iiint_V \left\{ \frac{\partial \hat{C}_i}{\partial t} + \nabla \hat{J}_i - \hat{R}_i^V \right\} dV = 0$$

• V is arbitrary, and thus

$$\frac{\partial \hat{C}_i}{\partial t} + \nabla \hat{J}_i - \hat{R}_i^V = 0.$$

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Fundamental Equations One-Dimensional Model

General Continuity Equation for Interfaces

- V arbitrary volume, delimited by the surface S
- Σ arbitrary surface dividing V into V₁, V₂ and S into S₁, S₂
- Σ' the part of Σ contained in V
- n_1 , n_2 unitary normal vectors in each point of S_1 , S_2 et Σ' , pointing to the outside of V_1 and V_2 , resp.

General Continuity Equation for Interfaces

• Continuity equation in V, completed by possible reactions on Σ^\prime

$$\frac{\partial}{\partial t}\iiint_V \hat{C}_i \, dV = -\iint_S \hat{J}_i \cdot \boldsymbol{n} \, dS + \iint_{\Sigma'} \hat{R}_i^{\Sigma} \, dS + \iiint_V \hat{R}_i^V \, dV,$$

with $n=n_1$ on S_1 , and $n=n_2$ on S_2

• Conservation equations in V_1 and V_2

$$\frac{\partial}{\partial t} \iiint_{V_1} \hat{C}_i \, dV = - \iint_{S_1} \hat{J}_i \cdot \boldsymbol{n}_1 \, dS - \iint_{\Sigma'} \hat{J}_i \cdot \boldsymbol{n}_1 \, dS + \iiint_{V_1} \hat{R}_i^V \, dV$$
$$\frac{\partial}{\partial t} \iiint_{V_2} \hat{C}_i \, dV = - \iint_{S_2} \hat{J}_i \cdot \boldsymbol{n}_2 \, dS - \iint_{\Sigma'} \hat{J}_i \cdot \boldsymbol{n}_2 \, dS + \iiint_{V_2} \hat{R}_i^V \, dV.$$

Ocean Sediment-Interaction and Early Diagenesis

Since

$$\iiint_{V} \hat{C}_{i} dV = \iiint_{V_{1}} \hat{C}_{i} dV + \iiint_{V_{2}} \hat{C}_{i} dV,$$
$$\iiint_{V} \hat{R}_{i}^{V} dV = \iiint_{V_{1}} \hat{R}_{i}^{V} dV + \iiint_{V_{2}} \hat{R}_{i}^{V} dV,$$

and

$$\iint_{S} \hat{\boldsymbol{J}}_{i} \cdot \boldsymbol{n} \, dS = \iint_{S_{1}} \hat{\boldsymbol{J}}_{i} \cdot \boldsymbol{n}_{1} \, dS + \iint_{S_{2}} \hat{\boldsymbol{J}}_{i} \cdot \boldsymbol{n}_{2} \, dS,$$

we get

$$\iint_{\Sigma'} \left\{ \hat{R}_i^{\Sigma} + \left(\hat{\boldsymbol{J}}_i |_1 \cdot \boldsymbol{n}_1 + \hat{\boldsymbol{J}}_i |_2 \cdot \boldsymbol{n}_2 \right) \right\} \, dS = 0$$

General Continuity Equation for Interfaces

 Σ' being arbitary since Σ is arbitrary, we have the following continuity equation for any interface:

$$\hat{R}_i^{\Sigma} + \left(\hat{\boldsymbol{J}}_i |_1 \cdot \boldsymbol{n}_1 + \hat{\boldsymbol{J}}_i |_2 \cdot \boldsymbol{n}_2 \right) = 0.$$

Noting that

 $\boldsymbol{n}_2 = -\boldsymbol{n}_1$ on $\boldsymbol{\Sigma}',$

we can rewrite this equation as

$$\hat{R}_i^{\boldsymbol{\Sigma}} + \left(\hat{\boldsymbol{J}}_i |_1 - \hat{\boldsymbol{J}}_i |_2 \right) \cdot \boldsymbol{n}_1 = 0.$$

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Fundamental Equations One-Dimensional Model

Sediments: Two Phases and Multiples Constituents

- Two phases
 - solids \rightarrow properties denoted by exponent 's'
 - $\, \bullet \,$ porewater $\, \rightarrow \,$ properties denoted by exponent 'f'
- Surface sediment: typically 70–90% water
- Porosity $\pmb{arphi}=\pmb{arphi}(t,\pmb{x})$ defined by

 $\varphi = \frac{\text{volume of connected porewater space}}{\text{total volume of sediment}}$

• ϕ^{f} water fraction (fluid) and ϕ^{s} solid fraction

Neglecting volumes of unconnected pores

 $arphi^{\mathsf{f}} = arphi$ and $arphi^{\mathsf{s}} = 1 - arphi$

Total Concentrations and Phase Concentrations

- Continuity equations expressed in terms of \hat{C}_i , concentration of *i* per unit volume of total sediment
- More directly measurable
 - *i* solid: C_i^s concentration of *i* in units of mass per unit volume of solid sediment

$$\hat{C}_i = \varphi^{\mathsf{s}} C_i^{\mathsf{s}}$$

• *i* solute: C_i^f concentration of *i* in units of mass (or moles) per unit volume of porewater

$$\hat{C}_i = \varphi^{\mathsf{f}} C_i^{\mathsf{f}}$$

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Seafloor Sediments Modelling Fundamental Equations One-Dimensional Model

One-Dimensional Model

With $\hat{J}_i = \hat{J}_i e_z$, the continuity equation becomes

$$\frac{\partial \hat{C}_i}{\partial t} + \frac{\partial \hat{J}_i}{\partial z} - \hat{R}_i^V = 0.$$

At any interface Σ , with upper side '1' and lower side '2':

•
$$\hat{J}_{i}^{1} n^{1} = -\hat{J}_{i}^{1}$$

• $\hat{J}_{i}^{2} n^{2} = \hat{J}_{i}^{2}$

Hence,

$$\hat{R}_i^{\Sigma} + \left(\hat{J}_i^2 - \hat{J}_i^1\right) = 0.$$

Advection

transport by the general movement of one or more phases

Diffusion

mixing processes

Non-local transport

representation (parametrization) of transport phenomena that cannot be taken explicitly into account in a one-dimensional framework

 \rightarrow to include as sources or sinks, similarly to reactions

Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis	
Modelling	One-Dimensional Model	
The man ant in Demonstrate Advantian		

- Transport in Porewater: Advection
 - Solute *i*, of concentration C_i^{f} in porewater

$$\hat{J}_{\mathsf{adv}\,i} = u\,\hat{C}_i = \phi^\mathsf{f}\,uC_i^\mathsf{f},$$

where u = u(z, t), such that $u = ue_z$ is the velocity of the porewater flux relative to the sediment-water interface

- Generally oriented upwards, as a result of compaction of the sedimentary column (ϕ decreases with z)
- *u* can possibly include a contribution from an externally impressed flow
- *u* is most often negligible compared to diffusion

Transport in Porewater: Diffusion

- Molecular and ionic diffusion
- Diffusive flux per unit area of porewater

$$J_{\text{diff }i}^{\text{f}} = -D_{i}^{\text{sed}} \frac{\partial C_{i}^{\text{f}}}{\partial z}$$

where D_i^{sed} is the *effective diffusion coefficient* in the sediment and $\frac{\partial C_i^f}{\partial z}$ the concentration gradient of *i* in porewater along the vertical

- $J_{\text{diff}\,i}^{\text{f}}$, per unit area of porewater, must be related to $\hat{J}_{\text{diff}\,i}$, per unit area of total sediment
- Diffusion does not operate directly along the vertical, but along tortuous pathways: follows local concentration gradients, lower than the vertical gradient

Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis
Seafloor Sediments Modelling	Fundamental Equations One-Dimensional Model
Transport in Porewater: Diffusion	

• Empirical relationship between D_i^{sed} and D_i^{sw} , the diffusion coefficient in seawater

$$D_i^{
m sed} = D_i^{
m sw}/ heta^2$$

where $\theta = \frac{dL}{dz}$ is the *tortuosity*, *dL* being the total distance that a molecule has to travel to cover the distance *dz* along the vertical

• Empirical relationships between θ^2 and porosity

Archie's Law	$ heta^2=arphi^{1-m}$	$m = 2.14 \pm 0.03$	$r^2 = 0.53$
Burger-Frieke eqn.	$ heta^2=arphi+a(1-arphi)$	$a = 3.79 \pm 0.11$	$r^2 = 0.64$
Weissberg rel.	$ heta^2=1-b\ln arphi$	$b = 2.02 \pm 0.08$	$r^2 = 0.65$

Transport in Porewater: Diffusion

• Relationship between $J_{\text{diff }i}^{\text{f}}$ and $\hat{J}_{\text{diff }i}$: it is possible to show that

$$\hat{J}_{\mathrm{diff}\,i} = \varphi^{\mathrm{f}} J^{\mathrm{f}}_{\mathrm{diff}\,i}$$

• Finally:

$$\hat{J}_{\text{diff}\,i} = -\varphi^{\text{f}} \frac{D_i^{\text{sw}}}{\theta^2} \frac{\partial C_i^{\text{f}}}{\partial z}$$

• In summary: total transport of a solute i

$$\hat{J}_i = \varphi^{\mathsf{f}} u C_i^{\mathsf{f}} - \varphi^{\mathsf{f}} \frac{D_i^{\mathsf{sw}}}{\theta^2} \frac{\partial C_i^{\mathsf{f}}}{\partial z}$$

• Solid *i*, with concentration C_i^s in the solid sediment fraction

$$\hat{J}_{\mathsf{adv}\,i} = w\,\hat{C}_i = \phi^\mathsf{s} w C_i^\mathsf{s},$$

where w = w(z, t), such that $w = w e_z$, is the velocity of the bulk solids relative to the water-sediment interface

- w may be positive (oriented downwards) or negative (oriented upwards), and may even change sign within the sediment column
 - $w \ge 0$: net accumulation
 - $w \le 0$: erosion

Transport in the Solid Phase: Mixing Processes

Macrofaunal activity (Berner, 1980)

Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis
Seafloor Sediments	Fundamental Equations
Modelling	One-Dimensional Model
Transport in the Solid Phase:	Mixing Processes

- Bioturbation: mixing of the surface layer of the seafloor sediment by macro-organisms in their quest for food (organic matter)
- Assimilable to a diffusive process \rightarrow *biodiffusion*
- Characterization of a biodiffusive process
 - biodiffusion coefficient D_{bio} (typical values: 0.1–10 cm²/yr)
 - mixed-layer depth L average depth of activity (global average observation: 9,8cm±4,5cm)
- Positive correlation between bioturbation and deposition rate of fresh organic matter
- Absence of bioturbation in anoxic sediments

Transport in the Solid Phase: Mixing Processes

- Two types of biodiffusion
 - *interphase*: the bulk sediment (solids and porewater) is mixed

$$\hat{J}_{\text{inter}\,i} = -D^{\text{inter}} \frac{\partial \phi^{\text{s}} C_{i}^{\text{s}}}{\partial z}$$

• *intraphase*: mixing operates separately on the fluid and the solid phases (possibly. even separately on different solids)

$$\hat{J}_{\text{intra}\,i} = -\phi^{\text{s}} D_{i}^{\text{intra}} \frac{\partial C_{i}^{\text{s}}}{\partial z}$$

• Biodiffusion also affects solutes, but in general, $D_{\text{bio},i} \ll D_i^{\text{sw}}$

• Dissolution rate of *calcite* $\hat{T}_{Calc\ diss}^V$, in units of mass per unit volume of total sediment

$$\hat{\mathcal{T}}^{V}_{\mathsf{Calc diss}} = k_{\mathsf{Calc}} imes \boldsymbol{\varphi}^{\mathsf{s}} imes [\mathsf{Calcite}]^{\mathsf{s}}$$

with

$$k_{\mathsf{Calc}} = \left\{ egin{array}{cc} k_c imes (1 - \Omega_{\mathsf{Calc}})^{n_c} & \mathsf{si} & \Omega_{\mathsf{Calc}} < 1 \\ 0 & \mathsf{si} & \Omega_{\mathsf{Calc}} \geq 1 \end{array}
ight.$$

where

- $\Omega_{Calc} = \frac{[Ca^{2+}]^{f}[CO_{3}^{2-}]^{f}}{\kappa_{Calc}}$ is the degree of saturation of calcite, K_{Calc} being its (stoichiometric) solubility product
- k_c is the dissolution rate constant
- *n_c* is the apparent rate order

*Boundary Conditions: Ocean-Sediment Interface

• Apply the continuity equation to an interface

$$\hat{R}_i^{\Sigma} + \left(\hat{J}_i^- - \hat{J}_i^+\right) = 0$$

• Let us define $\hat{J}_i^- = \hat{l}_i^{\text{top}} - \hat{O}_i^{\text{top}}$ where $\hat{l}_i^{\text{top}} \ge 0$ is the gross input flux of *i* across the sediment-water interface and $\hat{O}_i^{\text{top}} \ge 0$ is the gross output flux. In the absence of surface reactions

$$\hat{I}_i^{\mathrm{top}} - \hat{O}_i^{\mathrm{top}} - \hat{J}_i^{z_T^+} = 0.$$

- *Solutes*: set concentrations (Dirichlet boundary conditions)
- Solids: continuity of the input flux (set \hat{l}_i^{top})

Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis
Saaflaar Sadimanta	Eurodomontal Equations
Modelling	One-Dimensional Model
*Boundary Conditions: Mixed-Layer Bottom	

• Apply the continuity equation to an interface

$$\hat{R}_i^{\Sigma} + \left(\hat{J}_i^- - \hat{J}_i^+\right) = 0$$

- Solids:
 - no boundary condition required for solids if $w_{\rm B} \ge 0$;
 - boundary condition similar to that at the sediment-water interface if $w_B \leq 0$ (chemical erosion, input of materiel into the mixed-layer across the bottom)
- *Solutes*: continuity equation requires the porewater concentration gradients to vanish for each solute (C_i^f)

Boundary Conditions

Ocean-sediment interface

- Solutes: set concentrations (Dirichlet boundary conditions)
- Solids: continuity of the input flux $(\hat{J}_i^{z_T^+} = \hat{l}_i^{top})$

Mixed-layer bottom

- Solutes: continuity equation requires porewater concentration gradients of each solute (C_i^{f}) to vanish
- Solids:
 - net accumulation ($w_{\rm B} \ge 0$): no boundary condition
 - chemical erosion ($w_B \le 0$): boundary condition similar to that at the sediment-water interface (input of materiel into the mixed-layer across the bottom)

A First Simple Carbonate Diagenesis Model

- Mixed layer 10 cm thick, with constant porosity
- Homogeneous ("well-mixed") solid phase
- Solids: calcite, inert material (clay, quartz)
- Solute: CO_3^{2-}
- Steady-state $[CO_3^{2-}]$ profile, advection neglected
- Equations
 - one global mass conservation equation for calcite and inert material in the mixed-layer
 - one diffusion-reaction equation for $[CO_3^{2-}]$
 - reaction term: $\hat{R}_{CO3}^V = \hat{T}_{Calc \ diss}^V$
- Exact analytical solution for $n_c = 1$, approximate analytical or numerical for $n_c \neq 1$

Insufficiency of the Simple Model

- Transport of DIC underestimated: CO_3^{2-} ions released during CaCO₃ dissolution react with porewater CO₂ to form HCO_3^- and DIC can thus also be transported under that form
- Significant CaCO₃ dissolution above the saturation horizon \rightarrow dissolution promoted by the release of CO₂ during organic matter degradation in the mixed-layer
- Phenomenon impossible to represent with the simple model: no dissolution if $\Omega_{Calc}(z_{top}) > 1$

	Guy Munhoven	Ocean Sediment-Interaction and Early Diagenesis
	Seafloor Sediments	Fundamental Equations
	iviodelling	One-Dimensional Model
Organic Matter Remineralization		
Organic Matter Kennieranzation		
Organic matter $(OM = (CH_2O)_1)$	remineralization re 06(NH ₃) ₁₆ (H ₃ PO	eactions ₄), following Redfield)
(1) Oxic Respiration	$\begin{array}{c} OM + 138O_2 \\ \rightarrow 106CO_2 + 16 \end{array}$	$HNO_3 + H_3PO_4 + 122H_2O_4$
(2a) Complete	$OM + 94, 4HNO_3$	
denitrification	ightarrow 106 CO ₂ + 55	$5,2N_2 + H_3PO_4 + 177,2H_2O$
<i>i</i> .		

	actintification	/ 100 002 + 33,2102 + 1131 04 + 111,21120
(2b)	Partial	OM + 84,8HNO ₃
	denitrification	$\rightarrow 106\text{CO}_2 + 42, 4\text{N}_2 + 16\text{NH}_3 + \text{H}_3\text{PO}_4 + 148, 4\text{H}_2\text{O}$
(3)	Mn(IV) reduction	$OM + 236 MnO_2 + 472 H^+$
		$ ightarrow 106 CO_2 + 8 N_2 + H_3 PO_4 + 236 Mn^{2+} + 366 H_2 O$
(4)	Fe(III) reduction	$OM + 212 Fe_2O_3 + 848 H_2O$
		$ ightarrow 106 { m CO}_2 + 16 { m NH}_3 + { m H}_3 { m PO}_4 + 472 { m Fe}^{2+}$
(5)	Sulfate reduction	$OM + 53SO_4^{2-}$
		$ ightarrow 106{ m CO}_2^+ + 16{ m NH}_3^- + { m H}_3^-{ m PO}_4^- + 53{ m S}^{2-}^- + 106{ m H}_2^-{ m O}_2^-$
(6)	Methanogenesis	$OM \rightarrow 53CO_2 + 53CH_4 + 16NH_3 + H_3PO_4$

Seafloor Sediments Modelling Fundamental Equations One-Dimensional Model

Porewater Solute Zonation

Improved Carbonate Diagenesis Model

- Mixed-layer 10 cm thick
- Solids: calcite, inert material (clay, quartz) and organic matter, transported by advection and biodiffusion
- Solutes: CO_2 , HCO_3^- , CO_3^{2-} et O_2 , transported by molecular and ionic diffusion only
- Organic matter remineralization by oxic respiration:

 $\mathsf{OM} + 138\,\mathsf{O}_2 \to 106\,\mathsf{CO}_2 + 16\,\mathsf{HNO}_3 + \mathsf{H}_3\mathsf{PO}_4 + 122\,\mathsf{H}_2\mathsf{O}$

- Equations
 - one diffusion-reaction equation per solute
 - one advection-diffusion-reaction equation per solid

Improved Carbonate Diagenesis Model

Reaction terms: organic matter and oxygen

• Organic matter (OM) remineralization rate

$$\hat{\mathcal{T}}_{\mathsf{OM remin}}^{V} = k_{\mathsf{OM}} \times \boldsymbol{\varphi}^{\mathsf{s}} \times [\mathsf{OM}]^{\mathsf{s}} \times \frac{[\mathsf{O}_2]^{\mathsf{f}}}{M_{\mathsf{O}_2} + [\mathsf{O}_2]^{\mathsf{f}}}$$

where M_{O_2} is a half-saturation constant and k_{OM} is a degradation rate constant

Hence

Reaction terms: calcite

• Dissolution rate if calcite

$$\hat{\mathcal{T}}^{V}_{\mathsf{Calc diss}} = k_{\mathsf{Calc}} imes \boldsymbol{\varphi}^{\mathsf{s}} imes [\mathsf{Calcite}]^{\mathsf{s}}$$

with

$$k_{\mathsf{Calc}} = \left\{ egin{array}{cc} k_c imes ig(1 - \Omega_{\mathsf{Calc}}ig)^{n_c} & \mathsf{si} & \Omega_{\mathsf{Calc}} < 1 \\ 0 & \mathsf{si} & \Omega_{\mathsf{Calc}} \geq 1 \end{array}
ight.$$

• Hence,

$$\hat{R}^V_{\mathsf{Calc}} = -\, \hat{T}^V_{\mathsf{Calc}\ \mathsf{diss}}$$

Improved Carbonate Diagenesis Model

Reaction terms: dissolved inorganic carbon

Chemical reaction

$$\mathrm{CO}_2 + \mathrm{CO}_3^{2-} + \mathrm{H}_2\mathrm{O} \stackrel{r_{1/2}}{\rightleftharpoons} 2 \mathrm{HCO}_3^-,$$

where $r_{1/2}$ denotes the net reaction rate, from left to right

• Reaction terms for CO_2 , HCO_3^- and CO_3^{2-}

$$\begin{array}{lll} \hat{R}_{\rm CO2}^V &=& -r_{1/2} + 106 \times \hat{T}_{\rm OM\ remin}^V \\ \hat{R}_{\rm HCO3}^V &=& 2 \times r_{1/2} \\ \hat{R}_{\rm CO3}^V &=& -r_{1/2} + \hat{T}_{\rm Calc\ diss}^V \end{array}$$

Guy Munhoven

Ocean Sediment-Interaction and Early Diagenesis

Fundamental Equations **One-Dimensional Model**

Improved Carbonate Diagenesis Model

Elimination of the fast reactions

- $r_{1/2} \gg \hat{T}_{Calc\ diss}^V, \hat{T}_{MO\ remin}^V$ (characteristic time $\simeq 10^2 10^3\ s$)
- Equilibrium hypothesis for interconversion reactions
- Elimination of $r_{1/2}$ from the eqns. for CO₂, HCO₃⁻ and CO₃²⁻
 - replace the equation for CO₂ by the sum of the equations for CO₂, HCO₃⁻ and CO₃²⁻ (\rightarrow DIC)
 - replace the equation for HCO_3^- by the sum of the equation for HCO_3^- plus twice the equation for CO_3^{2-} (\rightarrow ALK) • replace the equation for CO_3^{2-} by the equilibrium condition

$$K_2([HCO_3^-]^f)^2 - K_1[CO_2]^f[CO_3^{2-}]^f = 0$$

• Transformation of the partial differential equation (PDE) system into a differential algebraic equation (DAE) system

Seafloor Sediments Modelling Fundamental Equations One-Dimensional Model

References Cited and Recommended

- Berner R. (1980) Early Diagenesis. A Theoretical Approach. Princeton University Press, Princeton, NJ. 256 pp.
- Broecker W. S. and Peng T.-H. (1982) Tracers in the Sea, Eldigio Press, Palisades, NY. 690 pp. (https://www.ldeo.columbia.edu/~broecker/Home_ files/TracersInTheSea_searchable.pdf)
- C. Emiliani (1955) Pleistocene Temperatures. J. Geology 63:538–578.
- G. Munhoven (1997) Modelling Glacial-Interglacial Atmospheric CO₂ Variations: The Role of Continental Weathering. University of Liège. 273 pp. (http://hdl.handle.net/2268/161314).
- G. Munhoven (2021) Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching. *Geosci. Model. Dev.* 14:3603–3631. (https://doi.org/10.5194/gmd-14-3603-2021).
- J. Sarmiento and Gruber N. (2006) *Ocean Biogeochemical Dynamics*. Princeton University Press, Princeton, NJ. 503 pp.
- N. J. Shackleton and N. D. Opdyke (1973) Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 10⁵ year and 10⁶ year scale. *Quat. Res.* 3:39–55.