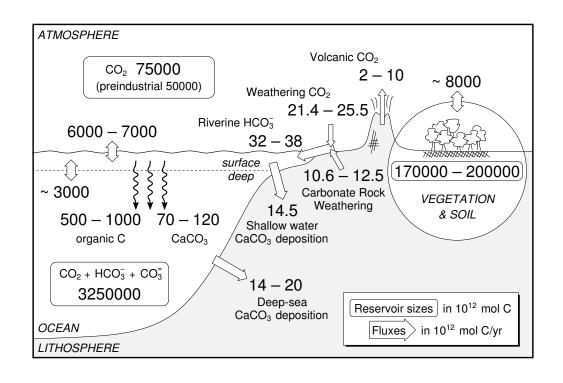

Chemical Equilibria and *p*H Calculations

Guy Munhoven

Institut d'Astrophysique et de Géophysique (B5c Build.) Room 0/13 eMail: Guy.Munhoven@ulg.ac.be Phone: 04-3669771


19th February 2025

Guy Munhoven Chemical Equilibria and *p*H Calculations

- Chemistry of the carbon dioxide system
- Chemical equilibria
- pH scales
- Conservative state variables: dissolved inorganic carbon and alkalinity
- Carbonate: calculation

Processes and Exchange Fluxes

Guy Munhoven Chemical Equilibria and *p*H Calculations

Introduction	Chemical Equilibria
Carbonate Chemistry	<i>p</i> H Scales
<i>p</i> H Calculation	Speciation
Alkalinity: A Conservative Variable?	Alkalinity
Carbonate Chemistry	

Dissolution of atmospheric CO_2 in water

$$\begin{array}{rcl} \mathsf{CO}_{2(\mathsf{g})} &\rightleftharpoons & \mathsf{CO}_{2(\mathsf{aq})} \\ \mathsf{CO}_{2(\mathsf{aq})} + \mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{H}_2\mathsf{CO}_3 \\ & \mathsf{H}_2\mathsf{CO}_3 &\rightleftharpoons & \mathsf{HCO}_3^- + \mathsf{H}^+ \\ & \mathsf{HCO}_3^- &\rightleftharpoons & \mathsf{CO}_3^{2-} + \mathsf{H}^+ \end{array}$$

Actually

$$\frac{[{\rm H_2CO_3}]}{[{\rm H_2CO_3}] + [{\rm CO_{2(aq)}}]} \ll$$

For practical usage, we define

$$\mathsf{CO}^*_{2(\mathsf{aq})} = \mathsf{H}_2\mathsf{CO}_3 + \mathsf{CO}_{2(\mathsf{aq})}.$$

Carbonate Chemistry

Equilibrium system actually used:

$$\begin{array}{rcl} \mathsf{CO}_{2(\mathsf{g})} &\rightleftharpoons & \mathsf{CO}^*_{2(\mathsf{aq})} \\ \mathsf{CO}^*_{2(\mathsf{aq})} + \mathsf{H}_2\mathsf{O} &\rightleftharpoons & \mathsf{HCO}^-_3 + \mathsf{H}^+ \\ & \mathsf{HCO}^-_3 &\rightleftharpoons & \mathsf{CO}^{2-}_3 + \mathsf{H}^+ \end{array}$$

Equilibrium relationships

$$\begin{split} \mathcal{K}_{\rm H}^{*} &= \frac{[{\rm CO}_{2({\rm aq})}^{*}]}{f_{{\rm CO}_{2}}} \quad ({\rm Henry's \ Law}) \\ \mathcal{K}_{1}^{*} &= \frac{[{\rm H}^{+}][{\rm HCO}_{3}^{-}]}{[{\rm CO}_{2({\rm aq})}^{*}]} \\ \mathcal{K}_{2}^{*} &= \frac{[{\rm H}^{+}][{\rm CO}_{3}^{2-}]}{[{\rm HCO}_{3}^{-}]} \end{split}$$

Guy Munhoven Ch

Chemical Equilibria and pH Calculations

- $pK := -\log_{10}(K)$, by analogy with $pH := -\log_{10}([H^+])$
- Consider, e.g., the equilibrium between CO_{2(aq)} and HCO₃⁻ in a solution containing dissolved CO₂:

$$K_1^* = rac{[H^+][HCO_3^-]}{[CO_{2(aq)}^*]}$$

When $[CO^*_{2(aq)}] = [HCO^-_3] (\rightarrow equivalence \ point)$, we have

$$K_1^* = [\mathsf{H}^+] \quad \Leftrightarrow \quad pK_1^* = p\mathsf{H}$$

 \Rightarrow

equivalence points located at the pK values

Stoichiometric vs. Thermodynamic Constants

- $K_{\rm H}^*$, K_1^* and K_2^* are *stoichiometric constants* as they link concentrations
- The corresponding thermodynamic equilibrium constants $K_{\rm H},~K_1$ and K_2
 - link activities instead of concentrations
 - only depend on temperature and pressure

Guy Munhoven

- have been determined for a large number of reactions
- The activity {A} and the concentration [A] of a chemical species A are related by the activity coefficient γ_A

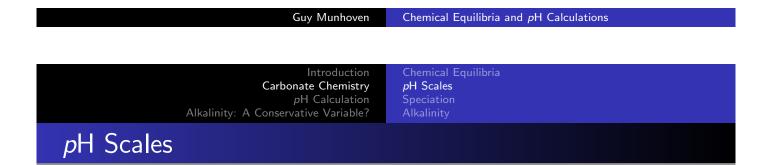
$$\{A\} = \gamma_A[A]$$

Chemical Equilibria and pH Calculations

• γ_A depends on the chemical composition of the solution

Alkalinity: A Conser	phate Chemistry pH pH Calculation Spe vative Variable? Alka	mical Equilibria Scales ciation alinity
Chemical Compositi	on of Seawa	ter
	Solute	mol
	Na^+	0.46900
	Mg^{2+}	0.05282
	Ca^{2+}	0.01028
	K^+	0.01021
Composition of	Sr^{2+}	0.00009
•	CI^-	0.54588
one kilogram of	SO_4^{2-}	0.02823
average seawater	HCO_3^-	0.00186
(<i>S</i> = 35)	Br [_]	0.00084
	CO_{3}^{2-}	0.00019
	$B(OH)_4^-$	0.00008
	F ⁻	0.00007
	B(OH) ₃	0.00033

After Millero (1982)


Activity Coefficients

• Influence of activity coefficients not negligible in seawater

lon	γ
Na^+	0.666
CI^-	0.668
H^+	0.590
HCO_3^-	0.570
CO_{3}^{2-}	0.039

Conditions: seawater at 25°C and S = 35After Zeebe and Wolf-Gladrow (2003, Tab. 1.1.3)

- Two ways to address this complication
 - calculation of γ values from solute interaction models \Rightarrow difficult and tedious
 - empirical determination of stoichiometric coefficients including effets of γ, as a function of temperature, pressure and salinity ⇒ adopted in practice

- Classically $pH = -\log_{10}[H^+]$
- However, even in freshwater solutions, free H⁺ ions present only in negligible amounts: most are complexed by water molecules
- In seawater, this complexing extends to other solutes as well
- In seawater, it would be best to adopt pH = − log₁₀{H⁺}
 ⇒ useless as {H⁺} cannot be individually measured
- Definition of operational *p*H scales that take into account the presence of extra ions able to release H⁺ ions
- Motivations essentially experimentally oriented

Introduction Carbonate Chemistry pH Calculation Alkalinity: A Conservative Variable? Chemical Equilibria pH Scales Speciation Alkalinity PH Scales Speciation Alkalinity

- Free Scale based upon $[H^+]_F$, the concentration of free and hydrated H^+ ions
- Total Scale takes into account the role of HSO₄⁻:

Guy Munhoven

$$pH_{T} := -\log_{10}[H^{+}]_{T}$$

 $[H^{+}]_{T} := [H^{+}]_{F}(1+S_{T}/K_{S})$

where

- $S_{\rm T} = [SO_4^{2-}] + [HSO_4^{-}]$ is the total sulphate concentration
- $K_{\rm S} = \frac{[{\rm H}^+]_{\rm F}[{\rm SO}_4^{2-}]}{[{\rm HSO}_4^-]}$ is the dissociation constant of ${\rm HSO}_4^-$
- $[H^+]_T \simeq [H^+]_F + [HSO_4^-]$

Introduction	Chemical Equilibria
Carbonate Chemistry	pH Scales
<i>p</i> H Calculation	Speciation
Alkalinity: A Conservative Variable?	Alkalinity
<i>p</i> H Scales: Seawater	

Chemical Equilibria and pH Calculations

Seawater Scale – takes into account the roles of HSO₄⁻ and HF:

$$\begin{array}{rcl} \rho \mathsf{H}_{\mathsf{SWS}} & := & -\log_{10}\,[\mathsf{H}^+]_{\mathsf{SWS}} \\ [\mathsf{H}^+]_{\mathsf{SWS}} & := & [\mathsf{H}^+]_{\mathsf{F}}(1 + S_{\mathsf{T}}/\mathcal{K}_{\mathsf{S}} + \mathcal{F}_{\mathsf{T}}/\mathcal{K}_{\mathsf{F}}) \end{array}$$

where

- $S_{\rm T}$ and $K_{\rm S}$ as for the Total Scale
- $F_{T} = [HF] + [F^{-}]$ is the total concentration of fluorine

•
$$K_{\rm F} = \frac{[{\rm H}^+]_{\rm F}[{\rm F}^-]}{[{\rm HF}]}$$
 is the dissociation constant of HF

• $[H^+]_{SWS} \simeq [H^+]_F + [HSO_4^-] + [HF]$

Carbonate Speciation

Why are these precisions important?

- Stoichiometric dissociation acid dissociation constant (such as K₁^{*} and K₂^{*}, e.g.) have the same units as [H⁺] ⇒ need to know on which *p*H scale these constants are given
- Dialogue between modellers and experimentalists easier if concepts used in common are known and agreed upon

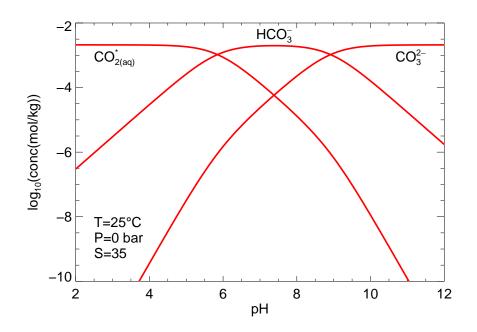
Guy Munhoven Chemical Equilibria and *p*H Calculations

	Introduction Carbonate Chemistry <i>p</i> H Calculation Alkalinity: A Conservative Variable?	Chemical Equilibria <i>p</i> H Scales Speciation Alkalinity
--	---	---

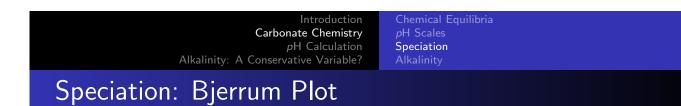
Carbonate Chemistry

Let $C_T = [CO^*_{2(aq)}] + [HCO^-_3] + [CO^{2-}_3]$. Equilibrium relationships lead to the following speciation relationships

$$\frac{[CO_{2(aq)}^{*}]}{C_{T}} = \frac{[H^{+}]^{2}}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}$$

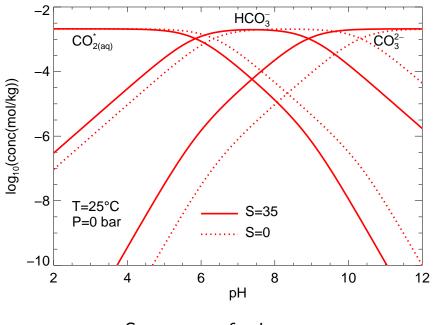

$$\frac{[HCO_{3}^{-}]}{C_{T}} = \frac{K_{1}^{*}[H^{+}]}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}$$

$$\frac{[CO_{3}^{2-}]}{C_{T}} = \frac{K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}$$


$$\Rightarrow pH \text{ plays a central role for the}$$

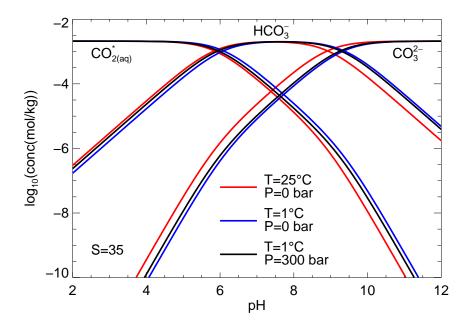
$$speciation \text{ of the } CO_{2}\text{-}HCO_{3}^{-}\text{-}CO_{3}^{2-} \text{ system}}$$

Speciation: Bjerrum Plot


Guy Munhoven Chemical Equilibria and *p*H Calculations

Points d'équivalence

Speciation: Bjerrum Plot



Seawater – freshwater

Guy Munhoven Chemical Equilibria and *p*H Calculations

Speciation: Temperature and Pressure Effects

Temperate and cold surface waters, deep water (3000 m)

Carbonate Chemistry

Special Roles of Different Species

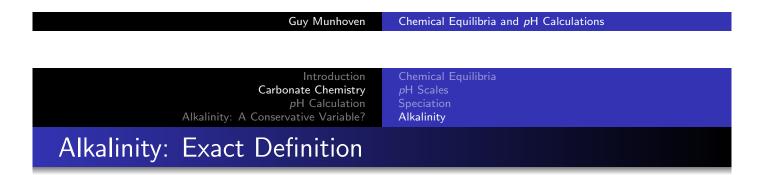
- CO_{2(aq)}: air-sea exchange
- CO_3^{2-} : carbonate dissolution

Measurables

- CO_{2(aq)}: by IR absorption (under favourable conditions)
- *p*H: after consideration of all the complications
- CO_3^{2-} : UV spectrophotometry of Pb(II) complexation
- C_{T} : by degassing via acidification
- Alkalinity: by titration with a strong acid (e.g., HCl)

State Variables of the Carbonate System

- H⁺ (or pH), CO_{2(aq)} (or pCO₂) and CO₃²⁻ are the only species participating in the carbonate equilibria that can be directly measured
- Neither H^+ nor pCO₂ nor CO₃²⁻ are conservative:


variations are not only controlled by sources and sinks in the system, but also by other state variables of the system (temperature, pressure) or other solutes, ...

$$\Rightarrow \begin{array}{c} p \text{H, } p \text{CO}_2 \text{ and } \text{CO}_3^{2-} \text{ are} \\ \text{unsuitable as state variables in models} \end{array}$$

- C_T is conservative and measurable
- 4 unknowns and 2 equilibrium relationships would require a second conservative and measurable parameter ... alkalinity

Alkalinity: a First Tour

- Alkalinity measures the capacity of a solution to neutralize acid to the bicarbonate equivalence point (where [HCO₃⁻] = [H⁺]), also called *second equivalence point*
- Measured by titration of a sample with a strong acid (generally HCI) until the equivalence point is reached; the *titration curve* (evolution of *p*H as a function of the added amount of acid) has an inflection point at this point, which must be determined with precision
- The alkalinity of the sample is then defined as the mole equivalent of acid added to reach the equivalence point
 - \Rightarrow at the equivalence point, alkalinity is reduced to zero

Dickson (1981):

"The total alkalinity of a natural water is thus defined as the number of moles of hydrogen ion equivalent to the excess of proton acceptors (bases formed from weak acids with a dissociation constant $K \leq 10^{-4.5}$, at $25 \degree C$ and zero ionic strength) over proton donors (acids with $K > 10^{-4.5}$) in one kilogram of sample."

$$Alk_T := \sum_i [proton acceptor_i] - \sum_j [proton donor_j]$$

Notice that

$$K \le 10^{-4.5} \Leftrightarrow pK \ge 4.5$$
 and $K > 10^{-4.5} \Leftrightarrow pK < 4.5$

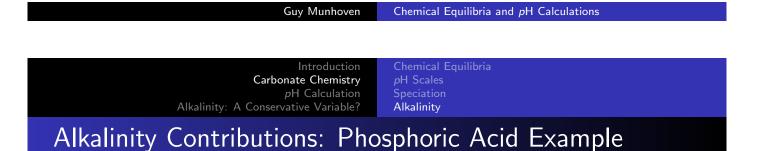
Carbonate Chemistry

Alkalinity: A Conservative Variable?

• Carbonic Acid H₂CO₃

$$\mathrm{H_2CO_3} \rightleftharpoons \mathrm{HCO_3^-} + \mathrm{H^+}, \qquad \textit{pK}_{\mathrm{C1}} = 6.3$$

Chemical Equilibria


Alkalinity

 $pK_{C1} \ge 4.5 \Rightarrow$ base is an acceptor, contributing $+[HCO_3^-]$

• Bicarbonate ion HCO₃

$$\text{HCO}_3^- \rightleftharpoons \text{CO}_3^{2-} + \text{H}^+, \qquad pK_{\text{C2}} = 10.3$$

 $pK_{C2} \ge 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times [CO_3^{2-}]$: by accepting a proton, the base CO_3^{2-} is converted to HCO_3^{-} , another acceptor, which must also be accounted for.

• Orthophosphoric Acid H_3PO_4

$$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+, \qquad pK_{P1} = 2.1$$

 $pK_{P1} < 4.5 \Rightarrow$ acid is a donor and contributes $-[H_3PO_4]$

• Dihydrogen phosphate $H_2PO_4^-$

$$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+, \qquad pK_{P2} = 7.2$$

 $pK_{P2} \ge 4.5 \Rightarrow$ base is an acceptor and contributes $+[HPO_4^{2-}]$

• Hydrogen phosphate HPO₄²⁻

$$\mathsf{HPO}_4^{2-} \rightleftharpoons \mathsf{PO}_4^{3-} + \mathsf{H}^+, \qquad p \mathcal{K}_{\mathsf{P3}} = 12.7$$

 $pK_{P3} \ge 4.5 \Rightarrow$ base is an acceptor, contributing $+2 \times [PO_4^{3-}]$

Alkalinity

Acide	рК _А	Type provided	Species	H^+ eq/mol
H ₂ O	14.0	acceptor	OH^-	[OH ⁻]
H_2CO_3	6.3	acceptor	HCO_3^-	$[HCO_3^-]$
HCO_3^{-1}	10.3	acceptor	CO_{3}^{2-}	$2 \times [CO_3^{2-}]$
B(OH) ₃	9.2	acceptor	$B(OH)_4^-$	$[B(OH)_4^-]$
HSO_4^{-1}	2.0	donor	HSO_4^{-1}	$-[HSO_4^{-}]$
HF	3.2	donor	HF	–[HF] [`]
H^+		donor	H^+	$-[{\sf H}^+]$
H_3PO_4	2.1	donor	H_3PO_4	-[H ₃ PO ₄]
$H_2PO_4^-$	7.2	acceptor	HPO_4^{2-}	$[HPO_4^{2-}]$
HPO₄ [⊥]	12.7	accepteur	PO_4^{3-}	$2 \times [PO_4^{3-}]$
H ₄ SiO ₄	9.7	acceptor	$H_3SiO_4^-$	$[H_3SiO_4^-]$
H ₂ S	7.0	acceptor	HS−	[HS ⁻]
HS¯−	12.0	acceptor	S^{2-}	$2 \times [S^{2-}]$
NH_4^+	9.3	acceptor	NH ₃	[NH ₃]

Compiled from data reported by Dickson (1981)

Guy Munhoven Chemical Equilibria and *p*H Calculations

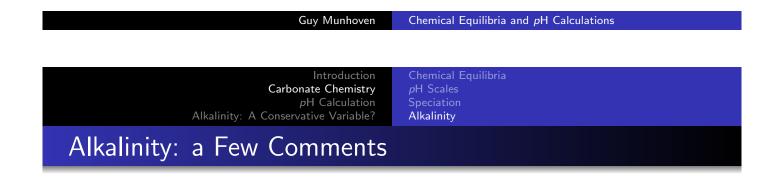
Introduction	Chemical Equilibria
Carbonate Chemistry	<i>p</i> H Scales
<i>p</i> H Calculation	Speciation
Alkalinity: A Conservative Variable?	Alkalinity
Alkalinity in Detail	

We thus obtain the following expression for alkalinity

$$\begin{split} \mathsf{Alk}_\mathsf{T} &= [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] + [\mathsf{OH}^-] \\ &+ [\mathsf{HPO}_4^{2-}] + 2 \times [\mathsf{PO}_4^{3-}] + [\mathsf{H}_3\mathsf{SiO}_4^-] \\ &+ [\mathsf{NH}_3] + [\mathsf{HS}^-] + 2 \times [\mathsf{S}^{2-}] + \dots \\ &- [\mathsf{H}^+]_\mathsf{F} - [\mathsf{HSO}_4^-] - [\mathsf{HF}] - [\mathsf{H}_3\mathsf{PO}_4] - \dots \end{split}$$

where the ... stand for the concentrations of additional negligible proton donors and acceptors.

Alkalinity in Practice


Alkalinity can generally be approximated to excellent precision by

$$Alk_T \simeq [HCO_3^-] + 2 \times [CO_3^{2-}] + [B(OH)_4^-] + [OH^-] - [H^+] \equiv Alk_{CBW}$$

Often, it is even sufficient to adopt

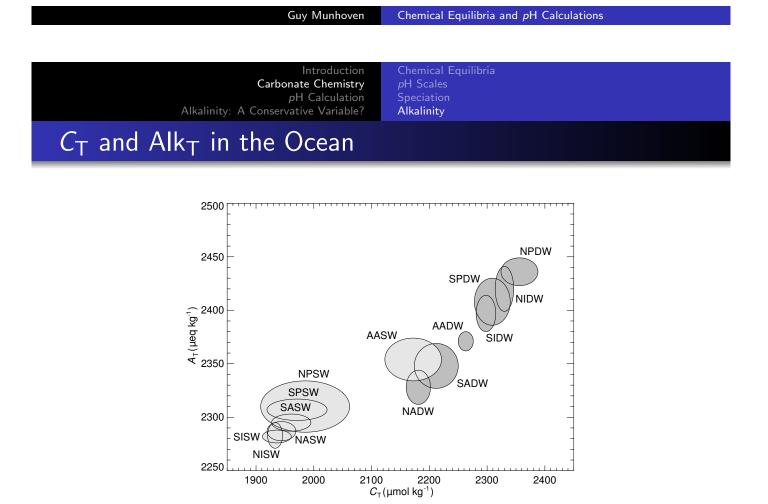
$$\mathsf{Alk}_\mathsf{T} \simeq [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] \equiv \mathsf{Alk}_\mathsf{CB}$$

However, under certain particular conditions, it may be necessary to take additional contributors into account, such as, e.g., the conjugate bases of phosphoric or silicic acids

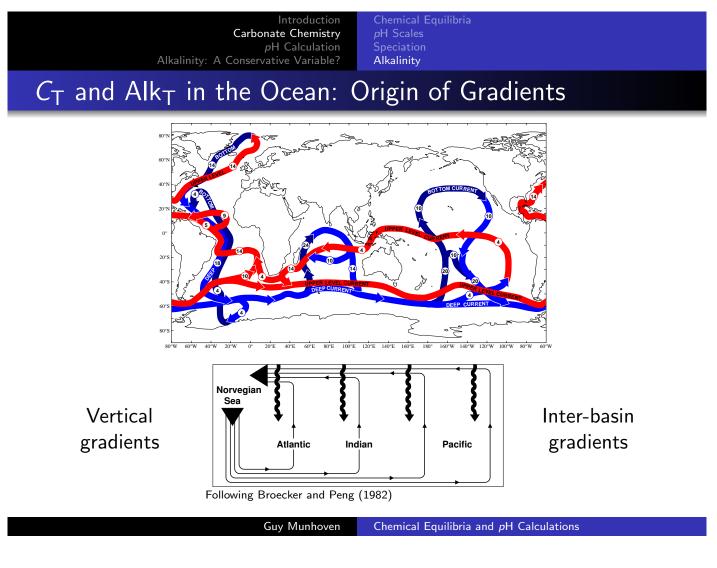
- Alkalinity is a complex concept, with an opaque definition
- In the literature, there are alternative definitions based upon electroneutrality, that define alkalinity as being equal to the charge difference between conservative cations and anions
- Alkalinity defined this way
 - is also conservative (by construction);
 - neglects contributions from non charged bases (e.g., NH₃) that may be important under some conditions (e.g., anoxic waters)
 - is equal to total alkalinity up to a sum of total concentrations (total phosphate, ammonium, sulphate), that are often, but not always, negligible
 - makes the concept even more confusing

Total Alkalinity: Properties

- Total alkalinity is conservative
 - affected by the precipitation and the dissolution of minerals


 $\mathsf{CaCO}_3 \leftrightarrows \mathsf{Ca}^{2+} + \mathsf{CO}_3^{2-}$

• not affected by the dissolution of gaseous CO_2 in water


 $CO_{2(g)} + H_2O \rightleftharpoons HCO_3^- + H^+$

- mixing two water samples, with masses M_1 and M_2 , and total alkalinities A_1 and A_2 , resp., produce a mixture of mass $M = M_1 + M_2$ and total alkalinity A, such that $MA = M_1A_1 + M_2A_2$
- The dominant alkalinity fraction in the most natural waters is *carbonate alkalinity*

$$\mathsf{Alk}_{\mathsf{C}} = [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}]$$

DIC: Dissolved Inorganic Carbon

Posing the problem

• select an appropriate approximation, such as, e.g.,

$\mathsf{Alk}_{\mathsf{T}} \simeq [\mathsf{HCO}_3^-] + 2 \times [\mathsf{CO}_3^{2-}] + [\mathsf{B}(\mathsf{OH})_4^-] + [\mathsf{OH}^-] - [\mathsf{H}^+]$

- Alk_T, B_T and C_T are given
- temperature, salinity and pressure given
- determine
 - solution *p*H
 - [CO^{*}_{2(aq)}], [HCO⁻₃], [CO²⁻₃] (speciation)
 CO₂ partial pressure in the atmosphere
 - CO₂ partial pressure in the atmosphere in equilibrium with the solution (pCO₂)

 \Rightarrow express each concentration as a function of $[H^+]$. . .

Carbonate System Speciation

$$C_{\rm T} = [{\rm CO}^*_{2(aq)}] + [{\rm HCO}^-_3] + [{\rm CO}^{2-}_3]$$

$$CO_{2(aq)}^{*} + H_2O \rightleftharpoons H^+ + HCO_3^- \qquad K_1^{*} = \frac{[H^+][HCO_3^-]}{[CO_{2(aq)}^*]}$$
$$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-} \qquad K_2^{*} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$$

 K_1^* and K_2^* (stoichiometric) equilibrium constants

Guy Munhoven	Chemical Equilibria and <i>p</i> H Calculations
Introduction Carbonate Chemistry <i>p</i> H Calculation Alkalinity: A Conservative Variable?	Posing the problem Procedure General Acid-Base System
Carbonate System Speciation	ı
$egin{array}{l} \mathcal{K}_1^* = rac{[H^+][HCO_3^-]}{[CO_{2(aq)}^*]} & \Rightarrow \end{array}$	$[HCO_3^-] = rac{\mathcal{K}_1^*}{[H^+]} \ [CO_{2(aq)}^*]$
$K_2^* = rac{[H^+][CO_3^{2-}]}{[HCO_3^-]} \Rightarrow$	$[CO_3^{2-}] = \frac{K_2^*}{[H^+]} [HCO_3^-]$

Hence

$$C_{T} = [CO_{2(aq)}^{*}] + \frac{K_{1}^{*}}{[H^{+}]} [CO_{2(aq)}^{*}] + \frac{K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2}} [CO_{2(aq)}^{*}]$$

= $[CO_{2(aq)}^{*}] \frac{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2}}$

 $= \frac{K_1^*K_2^*}{[\mathsf{H}^+]^2} \,\, [\mathsf{CO}^*_{2(\mathsf{aq})}]$

Carbonate System: Speciation Relationships

Accordingly

$$[\mathrm{CO}^*_{2(\mathsf{aq})}] = \frac{[\mathrm{H}^+]^2}{[\mathrm{H}^+]^2 + K_1^*[\mathrm{H}^+] + K_1^*K_2^*}C_{\mathrm{T}}.$$

Since

$$[\mathsf{HCO}_3^-] \;=\; \frac{\mathcal{K}_1^*}{[\mathsf{H}^+]}[\mathsf{CO}_{2(\mathsf{aq})}^*] \quad \text{and} \quad [\mathsf{CO}_3^{2-}] \;=\; \frac{\mathcal{K}_1^*\mathcal{K}_2^*}{[\mathsf{H}^+]^2}[\mathsf{CO}_{2(\mathsf{aq})}^*]$$

we furthermore get

$$[\mathsf{HCO}_{3}^{-}] = \frac{K_{1}^{*}[\mathsf{H}^{+}]}{[\mathsf{H}^{+}]^{2} + K_{1}^{*}[\mathsf{H}^{+}] + K_{1}^{*}K_{2}^{*}}C_{\mathsf{T}}$$
$$[\mathsf{CO}_{3}^{2-}] = \frac{K_{1}^{*}K_{2}^{*}}{[\mathsf{H}^{+}]^{2} + K_{1}^{*}[\mathsf{H}^{+}] + K_{1}^{*}K_{2}^{*}}C_{\mathsf{T}}$$

Guy Munhoven Cl

Chemical Equilibria and pH Calculations

Borate System Speciation

Total dissolved borate

$$B_{\rm T} = [{\rm B}({\rm OH})_3] + [{\rm B}({\rm OH})_4^-]$$

Acid-base equilibrium

$$\mathsf{B}(\mathsf{OH})_3 + \mathsf{H}_2\mathsf{O} \rightleftharpoons \mathsf{H}^+ + \mathsf{B}(\mathsf{OH})_4^-$$

Equilibrium relationship

$$K_B^* = \frac{[H^+][B(OH)_4^-]}{[B(OH)_3]}$$

Introduction Carbonate Chemistry *p*H Calculation nitv: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

Borate System: Speciation Relationships

$$\begin{split} \mathcal{K}_{B}^{*} &= \frac{[H^{+}][B(OH)_{4}^{-}]}{[B(OH)_{3}]} \quad \Rightarrow \quad [B(OH)_{4}^{-}] \;=\; \frac{\mathcal{K}_{B}^{*}}{[H^{+}]} \; [B(OH)_{3}] \\ B_{T} &= \quad [B(OH)_{3}] + \frac{\mathcal{K}_{B}^{*}}{[H^{+}]} [B(OH)_{3}] \\ &= \quad [B(OH)_{3}] \; \frac{[H^{+}] + \mathcal{K}_{B}^{*}}{[H^{+}]} \end{split}$$

Hence

$$[\mathsf{B}(\mathsf{OH})_3] = \frac{[\mathsf{H}^+]}{[\mathsf{H}^+] + K_\mathsf{B}^*} B_\mathsf{T} \quad \text{and} \quad [\mathsf{B}(\mathsf{OH})_4^-] = \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*} B_\mathsf{T}$$

Guy Munhoven Chemical E

Chemical Equilibria and pH Calculations

Processing of the Alk_T terms related to the carbonate system

$$[HCO_{3}^{-}] = \frac{K_{1}^{*}[H^{+}]}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}C_{T}$$

$$2[CO_{3}^{2-}] = \frac{2K_{1}^{*}K_{2}^{*}}{[H^{+}]^{2} + K_{1}^{*}[H^{+}] + K_{1}^{*}K_{2}^{*}}C_{T}$$

$$[B(OH)_{4}^{-}] = \frac{K_{B}^{*}}{[H^{+}] + K_{B}^{*}}B_{T}$$

$$[OH^{-}] = \frac{K_{W}^{*}}{[H^{+}]}$$

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

• Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$

- First term
 - strictly decreasing with $[H^+]$ for $C_T > 0$
 - $\lim_{[H^+]\to 0} = 2C_T$
 - $\lim_{[H^+] \to +\infty} = 0$

Guy Munhoven Chemical Equilibria and *p*H Calculations

Introduction Carbonate Chemistry *p*H Calculation Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

• Second term

- strictly decreasing with $[H^+]$ for $B_T > 0$
- $\lim_{[H^+]\to 0} = B_T$
- $\lim_{[\mathsf{H}^+] \to +\infty} = 0$
- Third and fourth terms
 - strictly decreasing with [H⁺]
 - $\lim_{[H^+]\to 0} = +\infty$
 - $\lim_{[\mathsf{H}^+] \to +\infty} = -\infty$

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_{\mathsf{T}} + \frac{K_{\mathsf{B}}^*}{[\mathsf{H}^+] + K_{\mathsf{B}}^*}B_{\mathsf{T}} + \frac{K_{\mathsf{W}}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_{\mathsf{T}} = 0$$

Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and

- f strictly decreasing with [H⁺]
- f unbounded: sup = $+\infty$, inf = $-\infty$
- \Rightarrow one and only one positive root for any Alk_T.

 Guy Munhoven
 Chemical Equilibria and pH Calculations

 Introduction
Carbonate Chemistry
pH Calculation
Alkalinity: A Conservative Variable?
 Posing the problem
Procedure
General Acid-Base System

 Calculating pH From Alk_T and CT

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$

Root H has an intrinsic lower bound:

- consider the infimum of non-water alkalinity: $A_{nWinf} = 0$
- let H_{inf} be the positive root of $A_{nWinf} + \frac{K_W^*}{H_{inf}} H_{inf} Alk_T = 0$
- $f(H_{inf}) > A_{nWinf} + \frac{K_W^*}{H_{inf}} H_{inf} Alk_T = 0$
- accordingly: $H_{inf} < H \dots$

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_{\mathsf{T}} + \frac{K_{\mathsf{B}}^*}{[\mathsf{H}^+] + K_{\mathsf{B}}^*}B_{\mathsf{T}} + \frac{K_{\mathsf{W}}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_{\mathsf{T}} = 0$$

... and the root *H* has an intrinsic upper bound:

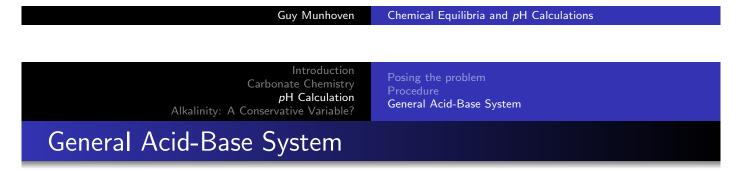
- consider the supremum of non-water alkalinity: $A_{nWsup} = 2C_T + B_T$
- let H_{sup} be the positive solution of $A_{nWsup} + \frac{K_W^*}{H} - H - Alk_T = 0$
- $f(H_{sup}) < A_{nWsup} + \frac{K_W^*}{H_{sup}} H_{sup} Alk_T = 0$

$$\Rightarrow H_{\rm inf} < H < H_{\rm sup}$$

Guy Munhoven Chemical Equilibria and *p*H Calculations

Calculating pH From Alk_T and C_T

$$\frac{K_1^*[\mathsf{H}^+] + 2K_1^*K_2^*}{[\mathsf{H}^+]^2 + K_1^*[\mathsf{H}^+] + K_1^*K_2^*}C_\mathsf{T} + \frac{K_\mathsf{B}^*}{[\mathsf{H}^+] + K_\mathsf{B}^*}B_\mathsf{T} + \frac{K_\mathsf{W}^*}{[\mathsf{H}^+]} - [\mathsf{H}^+] - \mathsf{Alk}_\mathsf{T} = 0$$


- Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and
 - f strictly decreasing with [H⁺]
 - f unbounded: sup = $+\infty$, inf = $-\infty$

 \Rightarrow one and only one positive root for any $\mathsf{Alk}_\mathsf{T}.$

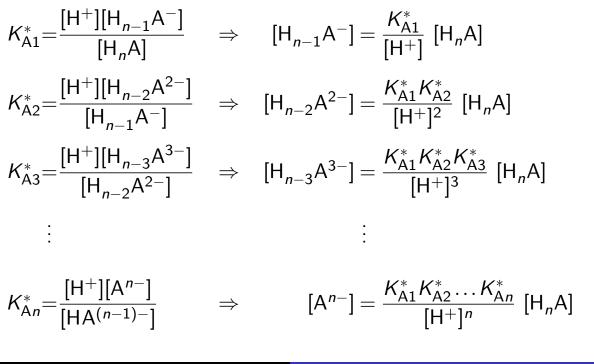
- Root can be intrinsically bracketed
- Equation can be reliably solved for [H⁺] by a hybrid Newton-Raphson-bisection method (convergence guaranteed)

Calculating pH From Alk_T, C_T , and Further Systems

- Add contributions, e.g., from the phosphate system
- $Alk_P = [HPO_4^{2-}] + 2 \times [PO_4^{3-}] [H_3PO_4]$
- Needs speciation relationships for complex acid-base systems

• Dissociation reactions of a general *n*-protic acid H_nA

$$H_{n}A \rightleftharpoons H^{+} + H_{n-1}A^{-} \qquad K_{A1}^{*} = \frac{[H^{+}][H_{n-1}A^{-}]}{[H_{n}A]}$$


$$H_{n-1}A^{-} \rightleftharpoons H^{+} + H_{n-2}A^{2-} \qquad K_{A2}^{*} = \frac{[H^{+}][H_{n-2}A^{2-}]}{[H_{n-1}A^{-}]}$$

$$\vdots \qquad \qquad \vdots$$

$$HA^{(n-1)-} \rightleftharpoons H^{+} + A^{n-} \qquad K_{An}^{*} = \frac{[H^{+}][A^{n-}]}{[HA^{(n-1)-}]}$$

• K_{A1}^* , K_{A2}^* , ..., K_{An}^* (stoichiometric) equilibrium constants

General Acid-Base System

Guy Munhoven

Chemical Equilibria and pH Calculations

Introduction Carbonate Chemistry *p*H Calculation Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

General Acid-Base System: Speciation Relationships

Let $A_T = [H_n A] + \ldots + [A^{n-}]$ denote the concentration of total dissolved $H_n A$. By summing all the previous equations, we get

$$A_{\mathsf{T}} = \left(1 + \frac{K_{\mathsf{A}1}^*}{[\mathsf{H}^+]} + \frac{K_{\mathsf{A}1}^* K_{\mathsf{A}2}^*}{[\mathsf{H}^+]^2} + \ldots + \frac{K_{\mathsf{A}1}^* K_{\mathsf{A}2}^* \cdots K_{\mathsf{A}n}^*}{[\mathsf{H}^+]^n}\right) [\mathsf{H}_n\mathsf{A}]$$

Hence

$$A_{\rm T} = \frac{[{\rm H}^+]^n + K_{\rm A1}^* [{\rm H}^+]^{n-1} + K_{\rm A1}^* K_{\rm A2}^* [{\rm H}^+]^{n-2} + \ldots + K_{\rm A1}^* K_{\rm A2}^* \cdots K_{\rm An}^*}{[{\rm H}^+]^n} \ [{\rm H}_n {\rm A}]$$

and thus finally

$$[\mathsf{H}_{n}\mathsf{A}] = \frac{[\mathsf{H}^{+}]^{n}}{[\mathsf{H}^{+}]^{n} + \mathcal{K}_{\mathsf{A}1}^{*}[\mathsf{H}^{+}]^{n-1} + \mathcal{K}_{\mathsf{A}1}^{*}\mathcal{K}_{\mathsf{A}2}^{*}[\mathsf{H}^{+}]^{n-2} + \ldots + \mathcal{K}_{\mathsf{A}1}^{*}\mathcal{K}_{\mathsf{A}2}^{*}\cdots\mathcal{K}_{\mathsf{A}n}^{*}} A_{\mathsf{T}}$$

General Acid-Base System

The fractions of undissociated acid and of the dissociated forms $H_{n-1}A^-$, $H_{n-2}A^{2-}$, ..., A^{n-} then alternately write

$$\begin{aligned} \frac{[\mathsf{H}_{n}\mathsf{A}]}{\mathsf{A}_{\mathsf{T}}} &= \frac{[\mathsf{H}^{+}]^{n}}{[\mathsf{H}^{+}]^{n} + \mathcal{K}_{\mathsf{A1}}^{*}[\mathsf{H}^{+}]^{n-1} + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*}[\mathsf{H}^{+}]^{n-2} + \ldots + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*} \cdots \mathcal{K}_{\mathsf{An}}^{*}} \\ &\vdots \\ \frac{[\mathsf{H}_{n-j}\mathsf{A}^{j-}]}{\mathsf{A}_{\mathsf{T}}} &= \frac{\mathcal{K}_{\mathsf{A1}}^{*} \cdots \mathcal{K}_{\mathsf{A1}}^{*}[\mathsf{H}^{+}]^{n-j}}{[\mathsf{H}^{+}]^{n} + \mathcal{K}_{\mathsf{A1}}^{*}[\mathsf{H}^{+}]^{n-1} + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*}[\mathsf{H}^{+}]^{n-2} + \ldots + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*} \cdots \mathcal{K}_{\mathsf{An}}^{*}} \\ &\vdots \\ \frac{[\mathsf{A}^{n-}]}{\mathsf{A}_{\mathsf{T}}} &= \frac{\mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*} \cdots \mathcal{K}_{\mathsf{An}}^{*}}{[\mathsf{H}^{+}]^{n-1} + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*}[\mathsf{H}^{+}]^{n-2} + \ldots + \mathcal{K}_{\mathsf{A1}}^{*}\mathcal{K}_{\mathsf{A2}}^{*} \cdots \mathcal{K}_{\mathsf{An}}^{*}} \end{aligned}$$

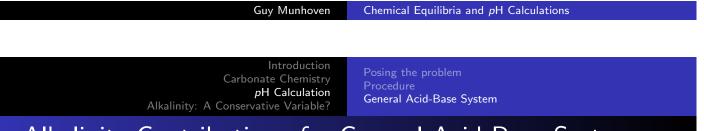
Guy Munhoven Chemical Equilibria and pH Calculations

Application to the phosphate system: n = 3

$$P_{T} = [H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{2-}] + [PO_{4}^{3-}]$$

$$[H_{3}PO_{4}] = \frac{[H^{+}]^{3}}{[H^{+}]^{3} + K_{P1}^{*}[H^{+}]^{2} + K_{P1}^{*}K_{P2}^{*}[H^{+}] + K_{P1}^{*}K_{P2}^{*}K_{P3}^{*}}P_{T}$$

$$[H_{2}PO_{4}^{-}] = \frac{K_{P1}^{*}[H^{+}]^{2}}{[H^{+}]^{3} + K_{P1}^{*}[H^{+}]^{2} + K_{P1}^{*}K_{P2}^{*}[H^{+}] + K_{P1}^{*}K_{P2}^{*}K_{P3}^{*}}P_{T}$$


$$[HPO_{4}^{2-}] = \frac{K_{P1}^{*}K_{P2}^{*}[H^{+}]}{[H^{+}]^{3} + K_{P1}^{*}[H^{+}]^{2} + K_{P1}^{*}K_{P2}^{*}[H^{+}] + K_{P1}^{*}K_{P2}^{*}K_{P3}^{*}}P_{T}$$

$$[PO_{4}^{3-}] = \frac{K_{P1}^{*}K_{P2}^{*}K_{P3}^{*}}{[H^{+}]^{3} + K_{P1}^{*}[H^{+}]^{2} + K_{P1}^{*}K_{P2}^{*}[H^{+}] + K_{P1}^{*}K_{P2}^{*}K_{P3}^{*}}P_{T}$$

... and Phosphate Alkalinity

$$\begin{aligned} \mathsf{Alk}_{\mathsf{P}} &= -[\mathsf{H}_{3}\mathsf{PO}_{4}] + [\mathsf{HPO}_{4}^{2-}] + 2[\mathsf{PO}_{4}^{3-}] \\ &= \frac{-[\mathsf{H}^{+}]^{3} + \mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}[\mathsf{H}^{+}] + 2\mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}\mathcal{K}_{\mathsf{P3}}^{*}}{[\mathsf{H}^{+}]^{3} + \mathcal{K}_{\mathsf{P1}}^{*}[\mathsf{H}^{+}]^{2} + \mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}[\mathsf{H}^{+}] + \mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}\mathcal{K}_{\mathsf{P3}}^{*}} P_{\mathsf{T}} \\ &= \left(\frac{\mathcal{K}_{\mathsf{P1}}^{*}[\mathsf{H}^{+}]^{2} + 2\mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}[\mathsf{H}^{+}] + 3\mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}\mathcal{K}_{\mathsf{P3}}^{*}}{[\mathsf{H}^{+}]^{3} + \mathcal{K}_{\mathsf{P1}}^{*}[\mathsf{H}^{+}]^{2} + \mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}[\mathsf{H}^{+}] + \mathcal{K}_{\mathsf{P1}}^{*}\mathcal{K}_{\mathsf{P2}}^{*}\mathcal{K}_{\mathsf{P3}}^{*}} - 1\right) P_{\mathsf{T}} \end{aligned}$$

"-1" \rightarrow 1 is the order of the acid dissociation step that defined the last (i. e., the weakest) proton donor

Alkalinity Contribution of a General Acid-Base System

For a general acid-base system $H_nA - H_{n-1}A^- - \ldots - A^{n-}$ with dissociation constant pK values pK_1, \ldots, pK_n , we have:

$$Alk_{A} = -m[H_{n}A]\cdots - (m-1)[H_{n-1}A^{-}]\cdots - [H_{n-m-1}A^{(m-1)-}] + [H_{n-m+1}A^{(m+1)-}] + \cdots + (n-m)[A^{n-}]$$

where m is an integer such that

• $pK_m < 4.5 \le pK_{m+1}$ if $pK_1 < 4.5$ and $pK_n \ge 4.5$

•
$$m = 0$$
 if $pK_1 \ge 4.5$

• m = n if $pK_n < 4.5$

Alkalinity Contribution of a General Acid-Base System

• Then

$$\mathsf{Alk}_\mathsf{A} = \sum_{j=0}^n (j-m) [\mathsf{H}_{n-j} \mathsf{A}^{j-}]$$

• It was previously established that

$$\frac{[\mathsf{H}_{n-j}\mathsf{A}^{j-}]}{\mathsf{A}_{\mathsf{T}}} = \frac{\mathsf{K}_{\mathsf{A}1}^*\cdots\mathsf{K}_{\mathsf{A}j}^*[\mathsf{H}^+]^{n-j}}{[\mathsf{H}^+]^n + \mathsf{K}_{\mathsf{A}1}^*[\mathsf{H}^+]^{n-1} + \mathsf{K}_{\mathsf{A}1}^*\mathsf{K}_{\mathsf{A}2}^*[\mathsf{H}^+]^{n-2} + \dots + \mathsf{K}_{\mathsf{A}1}^*\mathsf{K}_{\mathsf{A}2}^*\cdots\mathsf{K}_{\mathsf{A}n}^*}$$

• With $\Pi_j = \prod_{i=0}^j K_{Ai}^*$ and $\Pi_0 = 1$ this can be rewritten

$$[\mathsf{H}_{n-j}\mathsf{A}^{j-}] = \frac{\prod_{j} [\mathsf{H}^+]^{n-j}}{\sum_{i=0}^{n} \prod_{i} [\mathsf{H}^+]^{n-i}} A_\mathsf{T}$$

Guy Munhoven Chemical Equilibria and *p*H Calculations

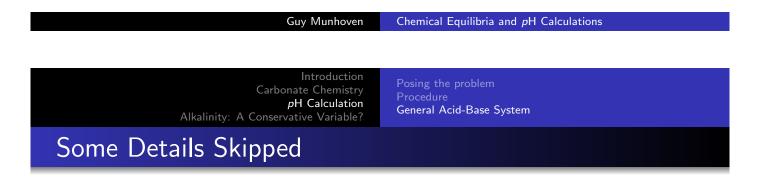
Introduction Carbonate Chemistry <i>p</i> H Calculation Alkalinity: A Conservative Variable?	Posing the problem Procedure General Acid-Base System		
Alkalinity Contribution of a General Acid-Base System			

Hence

$$Alk_{A} = \sum_{j=0}^{n} (j-m) \frac{\prod_{j} [H^{+}]^{n-j}}{\sum_{i=0}^{n} \prod_{i} [H^{+}]^{n-i}} A_{T}$$
$$= \left(\frac{\sum_{j=0}^{n} j \prod_{j} [H^{+}]^{n-j}}{\sum_{j=0}^{n} \prod_{j} [H^{+}]^{n-j}} - m \right) A_{T}$$

For $A_{\rm T} > 0$ this expression

- is strictly decreasing for $[H^+] > 0$;
- has the supremum $\lim_{[H^+] \to 0} = (n-m)A_T;$
- has the infimum $\lim_{[H^+]\to+\infty} = -mA_T$.


(Munhoven, GMD 2013)

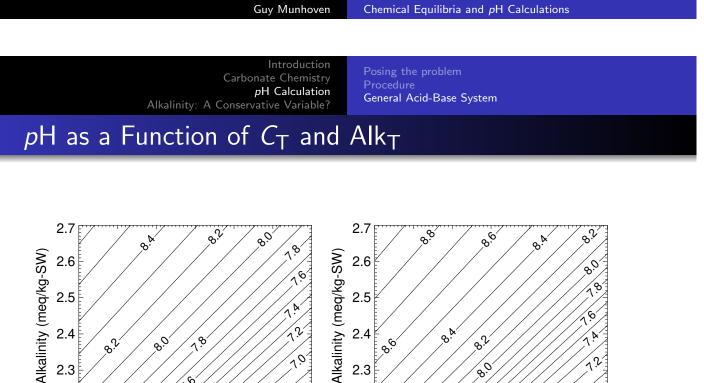
pH From Alk_T and Arbitrary Acid-Base Systems

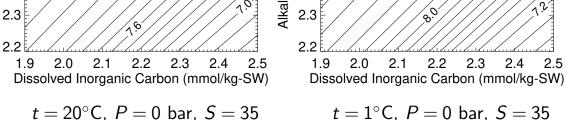
General Alkalinity-pH equation

$$Alk_{C}([H^{+}]; C_{T}) + \dots + Alk_{A}([H^{+}]; A_{T}) + \dots + \frac{K_{W}^{*}}{[H^{+}]} - [H^{+}] - Alk_{T} = 0$$

- Equation of the form $f([H^+]) = 0$, where $[H^+] > 0$ and
 - *f* strictly decreasing with [H⁺]
 - f unbounded: sup = $+\infty$, inf = $-\infty$
 - \Rightarrow one and only one positive root for any Alk_T.
- Root has intrinsic brackets that can be calculated from the non-water-alkalinity infimum and supremum
- Equation can be reliably solved for [H⁺] by a hybrid Newton-Raphson-bisection method (convergence guaranteed)

- All dissociation constants must be given on the same pH scale $\Rightarrow [H^+]$ root on that scale
- $\frac{\kappa_W^*}{[H^+]} [H^+]$ should actually read $\frac{\kappa_W^*}{[H^+]} [H^+]_f$
- $[H^+]_f = [H^+]/s$, where s = O(1) ($s \ge 1$) is a scale conversion factor from the free to the working scale (total or seawater)
- Other background acids (HSO₄⁻, HF) to be added as part of their respective acid-base systems
- Initial iterations in pH–Alk space, switching to [H⁺]–Alk space when sufficiently close to the root

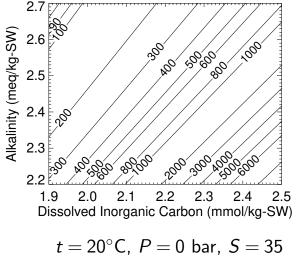

Introduction Carbonate Chemistry *p*H Calculation Alkalinity: A Conservative Variable?

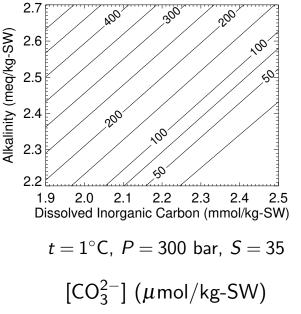

Posing the problem Procedure General Acid-Base System

Calculating pH From Alk_T and C_T

- Concentrations [CO^{*}_{2(aq)}], [HCO⁻₃], [CO²⁻₃] can now be calculated from the speciation relationships and [H⁺]
- pCO₂ is calculated from Henry's Law

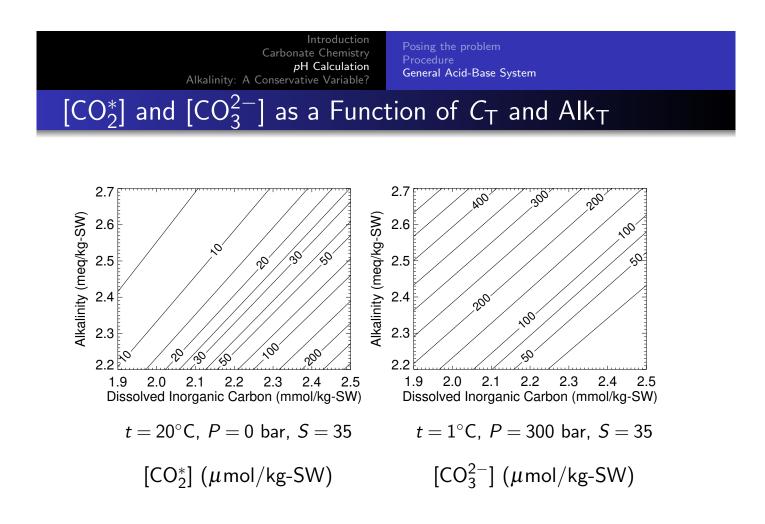
$$\mathsf{p}_{\mathsf{CO}_2} \simeq \mathit{f}_{\mathsf{CO}_2} = \frac{[\mathsf{CO}^*_{2(\mathsf{aq})}]}{\mathit{K}^*_\mathsf{H}}$$



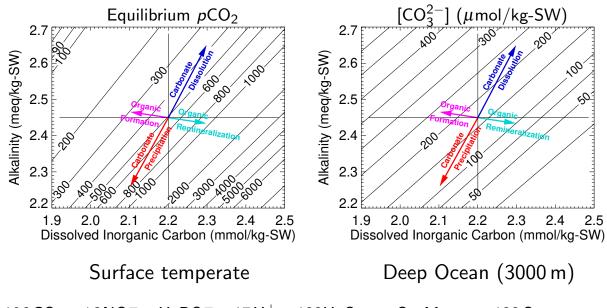

Introduction Carbonate Chemistry *p*H Calculation Alkalinity: A Conservative Variable?

Posing the problem Procedure General Acid-Base System

pCO_2 and $[CO_3^{2-}]$ as a Function of C_T and Alk_T



 pCO_2 (μ atm)



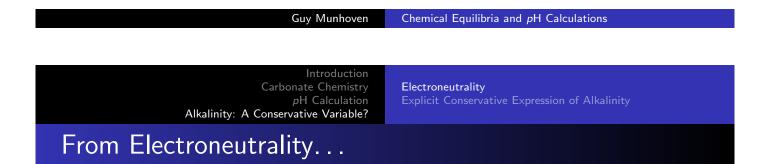
Guy Munhoven

Chemical Equilibria and pH Calculations

Atmospheric CO₂ and Deep-Sea CO₃⁻

Guy Munhoven Chemical Equilibria and *p*H Calculations

Calculating pH and Chemical Speciation in General


- Determine the total concentrations of all the acid-base systems present
- Chose an adequate approximation for Total Alkalinity
- Use the speciation relationships to convert the expression for Alk_T to an equation in $[\mathsf{H}^+]$
- Solve that equation (robust and efficient methods available)
- Calculate the speciation of all the systems present from the speciation relationships

Electroneutrality Explicit Conservative Expression of Alkalinity

Alkalinity, a Conservative Variable? A Detour via Electroneutrality...

Electroneutrality equation for the major (plus a few minor) ions in average seawater:

$$[Na^{+}] + 2[Mg^{2+}] + 2[Ca^{2+}] + [K^{+}] + 2[Sr^{2+}] - [CI^{-}] - [Br^{-}] - 2[SO_{4}^{2-}] - [F^{-}] - [HCO_{3}^{-}] - 2[CO_{3}^{2-}] - [B(OH)_{4}^{-}] = 0$$

Electroneutrality equation for the major ions in average seawater, completed by the missing ion concentrations from alkalinity and nutrients:

$$\begin{split} [\mathsf{Na}^+] + 2 [\mathsf{Mg}^{2+}] + 2 [\mathsf{Ca}^{2+}] + [\mathsf{K}^+] + 2 [\mathsf{Sr}^{2+}] \\ &- [\mathsf{CI}^-] - [\mathsf{Br}^-] - 2 [\mathsf{SO}_4^{2-}] - [\mathsf{F}^-] \\ &- [\mathsf{HCO}_3^-] - 2 [\mathsf{CO}_3^{2-}] - [\mathsf{B}(\mathsf{OH})_4^-] \\ &- [\mathsf{OH}^-] - [\mathsf{H}_3\mathsf{SiO}_4^-] \\ &- [\mathsf{H}_2\mathsf{PO}_4^-] - 2 [\mathsf{HPO}_4^{2-}] - 3 [\mathsf{PO}_4^{3-}] \\ &- [\mathsf{NO}_3^-] + [\mathsf{NH}_4^+] - [\mathsf{HS}^-] - 2 [\mathsf{S}^{2-}] \\ &+ [\mathsf{H}^+]_{\mathsf{F}} - [\mathsf{HSO}_4^-] = 0 \end{split}$$

Electroneutrality Explicit Conservative Expression of Alkalinity

... to Alkalinity

Collect the alkalinity components at the right-hand side and complete by the missing chargeless contributions :

$$\begin{split} [\mathsf{Na}^+] + 2[\mathsf{Mg}^{2+}] + 2[\mathsf{Ca}^{2+}] + [\mathsf{K}^+] + 2[\mathsf{Sr}^{2+}] \\ &- [\mathsf{CI}^-] - [\mathsf{Br}^-] - 2[\mathsf{SO}^{2-}_4] - [\mathsf{F}^-] - [\mathsf{HF}] \\ &- [\mathsf{H}_2\mathsf{PO}^-_4] - [\mathsf{HPO}^{2-}_4] - [\mathsf{PO}^{3-}_4] - [\mathsf{H}_3\mathsf{PO}_4] \\ &- 2[\mathsf{HSO}^-_4] - [\mathsf{NO}^-_3] + [\mathsf{NH}^+_4] + [\mathsf{NH}_3] - [\mathsf{HNO}_3] \\ &= [\mathsf{HCO}^-_3] + 2[\mathsf{CO}^{2-}_3] + [\mathsf{B}(\mathsf{OH})^-_4] + [\mathsf{OH}^-] \\ &+ [\mathsf{HPO}^{2-}_4] + 2[\mathsf{PO}^{3-}_4] + [\mathsf{H}_3\mathsf{SiO}^-_4] \\ &+ [\mathsf{HS}^-] + 2[\mathsf{S}^{2-}] + [\mathsf{NH}_3] \\ &- [\mathsf{H}^+]_{\mathsf{F}} - [\mathsf{HSO}^-_4] - [\mathsf{HF}] - [\mathsf{H}_3\mathsf{PO}_4] - [\mathsf{HNO}_3] \\ \end{split} \right\} = A_\mathsf{T} \end{split}$$

Guy Munhoven Chemical Equilibria and *p*H Calculations

Introduction Carbonate Chemistry pH Calculation Alkalinity: A Conservative Variable? The Explicit Conservative Expression of Alkalinity

The *explicit conservative* expression of alkalinity, Alk_{EC} , then follows from the left-hand side of the previous equation:

$$\begin{array}{rcl} \mathsf{Alk}_{\mathsf{EC}} &=& [\mathsf{Na}^+] + 2\,[\mathsf{Mg}^{2+}] + 2\,[\mathsf{Ca}^{2+}] + [\mathsf{K}^+] + 2\,[\mathsf{Sr}^{2+}] \\ && -\,[\mathsf{CI}^-] - [\mathsf{Br}^-] \\ && -\,2\,\mathsf{TSO}_4 - \mathsf{THF} - \mathsf{TPO}_4 - \mathsf{TNO}_3 + \mathsf{TNH}_3 \end{array}$$

where

$$TSO_{4} = [HSO_{4}^{-}] + [SO_{4}^{2-}] \quad (=S_{T})$$

$$THF = [HF] + [F^{-}] \quad (=F_{T})$$

$$TPO_{4} = [H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{2-}] + [PO_{4}^{3-}] \quad (=P_{T})$$

$$TNO_{3} = [HNO_{3}] + [NO_{3}^{-}]$$

$$TNH_{3} = [NH_{4}^{+}] + [NH_{3}]$$

(Wolf-Gladrow et al., 2007)

Explicit Conservative Expression of Alkalinity: Corollaries

- Alk_{EC} shows that Alk_T does not simply reduce to the charge difference between conservative cations and anions
 - "conservative ion" sometimes ambiguous (e.g., Sr²⁺, Ca²⁺)
 - surface-to-deep-sea alkalinity gradients would have to be proportional to salinity
 - important role of nutrients
- Alk_{EC} allows to quantify the effect of biogeochemical processes on alkalinity more easily
- Alk_{EC} clearly shows the conservative nature of Alk_T
 - each single term unaffected by *p*H, pressure and temperature changes

Guy Munhoven Chemical Equilibria and *p*H Calculations

Introduction Carbonate Chemistry pH Calculation Alkalinity: A Conservative Variable?

References Cited and Recommended

- Broecker W. S. and Peng T.-H. (1982) Tracers in the Sea, Eldigio Press, Palisades, NY. 690 pp.
- Dickson A. G. et al. (2007) Guide to Best Practices for Ocean CO₂ Measurements, PICES Special Publication 3, 191 pp.
- Dickson A. G. (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. *Deep-Sea Res.*, 28A(6):609–623.
- Dickson A. G. (1984) *p*H scales and proton-transfer reactions in saline media such as sea water. *Geochim. Cosmochim. Acta* 48:2299–2308.
- Gruber N. and J. Sarmiento (2006) *Ocean Biogeochemical Dynamics*. Princeton University Press, Princeton, NJ. 503 pp.
- Munhoven G. (2013) Mathematics of the total alkalinity-pH equation pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1. *Geoscientif. Model Dev.* 6, 1367–1388.
- Wolf-Gladrow D. A. et al. (2007) Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. *Mar. Chem.* 106, 287–300.
- Zeebe R. and D. Wolf-Gladrow (2003) *CO*₂ in Seawater: Equilibrium, Kinetics, *Isotopes.* Elsevier, Amsterdam. 346 pp.