Continent-Ocean Interaction: Role of Weathering

Guy Munhoven

Institute of Astrophysics and Geophysics (Build. B5c) Room 0/13 eMail: Guy.Munhoven@ulg.ac.be Phone: 04-3669771

16th April 2025

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Organisation of the Lecture

- Carbon cycle
 - processes
 - time scales
 - modelling: why?
- Model development: general principles
- Illustration: simple carbon cycle model
- Conclusions and outlook

Carbon Cycle: Processes and Time Scales

- → Natural Processes with long time scales
- → Natural Processes with *short* time scales
- → Human Perturbations

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Modelling

Model Development: General Principles

- Four stages
 - Problem Identification
 - Model Formulation
 - Model Solution
 - Interpretation of the results
- Equal importance for each stage
- Not a uni-directional procedure

(following Boudreau, 1997)

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Development of a Model

- Formulation
 - processes to include / exclude
 - mathematical representation of the processes
 - approximations adopted
 - hypotheses made
- Solution

depends on the situation

- Interpretation
 - secondary results: consequences
 - model to be refined or to be simplified

(following Boudreau, 1997)

Illustration: Application to an Actual Question

Question

How much CO₂ is released by volcanic and hydrothermal activity (metamorphic fluxes included)?

How does this compare to the amount of CO_2 released by human activity?

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Model Formulation: Hypotheses and Simplifications

- Time Scale: 1,000 10,000 years and more
 - little variability of volcanic and hydrothermal fluxes
 - biosphere at steady state: fluxes have no influence
 - burial of organic matter counter-balanced by kerogen carbon weathering: fluxes cancel out
 - sea-floor weathering poorly known and small: neglected
- Steady state

Carbon Cycle Model: Processes Considered

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Carbonate Chemistry in Seawater

Carbonate system equilibria

$$CO_{2(aq)} + 2 H_2O \implies HCO_3^- + H_3O^+$$

 $HCO_3^- + H_2O \implies CO_3^{2-} + H_3O^+$

- Special roles played by particular species
 - atmospheric $p_{CO_2} \longleftrightarrow [CO_{2(aq)}]_{surface}$
 - $CaCO_3$ burial $\longleftrightarrow [CO_3^{2-}]_{deep-sea}$
- Speciation calculated from combinations
 - Dissolved Inorganic Carbon

$$C_{\mathsf{T}} = [\mathsf{CO}_{2(\mathsf{aq})}] + [\mathsf{HCO}_3^-] + [\mathsf{CO}_3^{2-}]$$

Total Alkalinity

$$A_{T} \simeq [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [B(OH)_{4}^{-}] + [OH^{-}] - [H_{3}O^{+}]$$

Carbon Cycle Model: Fluxes Considered

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Carbon Cycle Model: Conservation Equations

- C_{atm}: total amount of C in the atmosphere
- Coce : total amount of C in the ocean
- $C_{atm} + C_{oce} = C$
- A: total amount of alkalinity in the ocean

$$\begin{array}{lcl} \frac{d\mathbf{C}_{\mathsf{atm}}}{dt} & = & C_{\mathsf{vol}} - C_{\mathsf{sil-a}} - C_{\mathsf{car-a}} + C_{\mathsf{o} \to \mathsf{a}} - C_{\mathsf{a} \to \mathsf{o}} \\ \frac{d\mathbf{C}_{\mathsf{oce}}}{dt} & = & C_{\mathsf{hyd}} + C_{\mathsf{sil-a}} + C_{\mathsf{car-a}} + C_{\mathsf{car-r}} - C_{\mathsf{o} \to \mathsf{a}} + C_{\mathsf{a} \to \mathsf{o}} - C_{\mathsf{sed}} \end{array}$$

$$\frac{d\mathbf{C}_{\text{atm}}}{dt} + \frac{d\mathbf{C}_{\text{oce}}}{dt} = \frac{d\mathbf{C}}{dt} = C_{\text{hyd}} + C_{\text{vol}} + C_{\text{car-r}} - C_{\text{sed}}$$

$$\frac{d\mathbf{A}}{dt} = A_{\text{sil}} + A_{\text{car}} - A_{\text{sed}}$$

Sources and Sinks of DIC and Alkalinity in the Ocean

Sources: continental weathering

carbonate minerals: congruent dissolution

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca^{2+} + 2HCO_3^-$$

• silicate minerals: incongruent dissolution

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Typical Weathering Reactions for Silicate Minerals

Dissolution of albite with precipitation of kaolinite

$$2 \text{ NaAlSi}_3 \text{O}_8 + 2 \text{CO}_2 + 11 \text{H}_2 \text{O} \longrightarrow$$

 $\text{Al}_2 \text{Si}_2 \text{O}_5 (\text{OH})_4 + 2 \text{Na}^+ + 2 \text{HCO}_3^- + 4 \text{H}_4 \text{SiO}_4$

• Dissolution of anorthite with precipitation of kaolinite

$$CaAl_2Si_2O_8 + 2CO_2 + 3H_2O \longrightarrow$$

 $Al_2Si_2O_5(OH)_4 + Ca^{2+} + 2HCO_3^-$

• Dissolution of microcline with precipitation of pyrophillite

$$2 \text{KAISi}_3 \text{O}_8 + 2 \text{CO}_2 + 6 \text{H}_2 \text{O} \longrightarrow$$

 $\text{Al}_2 \text{Si}_4 \text{O}_{10} (\text{OH})_2 + 2 \text{K}^+ + 2 \text{HCO}_3^- + 2 \text{H}_4 \text{SiO}_4$

Typical Weathering Reactions for Silicate Minerals

Dissolution of chlorite with precipitation of kaolinite

$$Mg_5Al_2Si_3O_{10} + 10CO_2 + 5H_2O \longrightarrow$$

 $Al_2Si_2O_5(OH)_4 + 5Mg^{2+} + 10HCO_3^- + H_4SiO_4$

• Dissolution of microcline with precipitation of gibbsite

$$KAISi_3O_8 + CO_2 + 4H_2O \longrightarrow$$

 $AI(OH)_3 + K^+ + HCO_3^- + H_4SiO_4$

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Sources and Sinks of DIC and Alkalinity in the Ocean

Sources: continental weathering

• carbonate minerals: congruent dissolution

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca^{2+} + 2HCO_3^-$$

• silicate minerals: generally incongruent dissolution

silicate mineral
$$+ b CO_2 + water \longrightarrow$$

secondary minerals $+ cations + b HCO_3^- + s H_4SiO_4$

Sinks: deposition of biogenic carbonates

$$Ca^{2+} + 2HCO_3^- \longrightarrow CaCO_3 + CO_2 + H_2O_3$$

Global Balance of the Ocean-Atmosphere System

Relationships between carbon and alkalinity fluxes

$$C_{\text{car-r}} = C_{\text{car-a}}$$
 $A_{\text{sil}} = C_{\text{sil-a}}$
 $A_{\text{car}} = C_{\text{car-a}} + C_{\text{car-r}} = 2 C_{\text{car-r}}$
 $A_{\text{sed}} = 2 C_{\text{sed}}$

• Upon introduction into the **C** and **A** balance equations:

$$\frac{d\mathbf{C}}{dt} = C_{\text{hyd}} + C_{\text{vol}} + C_{\text{car-r}} - C_{\text{sed}}$$

$$\frac{d\mathbf{A}}{dt} = A_{\text{sil}} + A_{\text{car}} - A_{\text{sed}}$$

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Carbon Cycle Model: Resolution

$$\frac{d\mathbf{C}}{dt} = C_{\text{hyd}} + C_{\text{vol}} + C_{\text{car-r}} - C_{\text{sed}}$$

$$\frac{d\mathbf{A}}{dt} = C_{\text{sil-a}} + 2C_{\text{car-r}} - 2C_{\text{sed}}$$

Carbon Cycle Model: Resolution

• Steady state conditions: $\Delta t > 10^6 \, \mathrm{yr}$

$$\frac{d\mathbf{C}}{dt} = 0$$
 et $\frac{d\mathbf{A}}{dt} = 0$

Accordingly, the balance equations for C and A become

$$C_{\text{hyd}} + C_{\text{vol}} + C_{\text{car-r}} - C_{\text{sed}} = 0 \tag{1}$$

$$C_{\mathsf{sil-a}} + 2 \, C_{\mathsf{car-r}} - 2 \, C_{\mathsf{sed}} = 0 \tag{2}$$

• Finally, equation $(1) - \frac{1}{2} \times \text{equation}$ (2) yields

$$C_{\mathsf{hyd}} + C_{\mathsf{vol}} = \frac{1}{2} C_{\mathsf{sil-a}}$$

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Carbon Cycle Model: Resolution

• Initial problem reduced to: $C_{sil-a} = ?$

$$C_{\text{riv}} = \underbrace{C_{\text{sil-a}} + C_{\text{car-a}}}_{32\%} + \underbrace{C_{\text{car-r}}}_{34\%}$$

- Riverine HCO₃⁻ data analysis
 - total amount: $31.6 37.7 \times 10^{12} \, \text{mol} \, \text{HCO}_3^-$ per year
 - 66% stem from the atmosphere
- Hence:

$$C_{\text{sil}-a} = 0.32 \times C_{\text{riv}}$$

and thus

$$C_{\text{hvd}} + C_{\text{vol}} = 0.16 \times C_{\text{riv}}$$
.

Solution and Interpretation

Result

Since

$$C_{\text{riv}} = (31.6 - 37.7) \times 10^{12} \text{ mol C/yr},$$

we find that

$$C_{\text{hyd}} + C_{\text{vol}} = (5.1 - 6.0) \times 10^{12} \,\text{mol C/yr}$$

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Solution and Interpretation

Interpretation

- \bullet Comparison with anthropogenic CO_2 emissions
- ullet Secondary result: sedimentary flux C_{sed}

$$\begin{array}{lcl} C_{\mathsf{sed}} & = & C_{\mathsf{hyd}} + C_{\mathsf{vol}} + C_{\mathsf{car-r}} & (\mathsf{equation} \ (1)) \\ & = & \frac{1}{2} \, C_{\mathsf{sil-a}} + C_{\mathsf{car-r}} \\ & = & \frac{1}{2} \, C_{\mathsf{sil-a}} + \frac{1}{2} \, C_{\mathsf{car-a}} + \frac{1}{2} \, C_{\mathsf{car-r}} \\ & = & \frac{1}{2} \, C_{\mathsf{riv}} \end{array}$$

Hence:

$$C_{\text{sed}} = (15.8 - 18.9) \times 10^{12} \,\text{mol C/an}$$

Solution and Interpretation

	Coal	Oil	Gas	Cement	Flaring	Total
1850	4.5	0.0	0.0	0.0	0.0	4.5
1900	42.9	1.3	0.3	0.0	0.0	44.5
1950	89.9	35.3	8.1	1.5	1.9	135.8
2000	197.5	234.8	107.3	18.8	4.0	562.5
2014	343.1	273.3	151.9	47.3	5.7	821.3

Units: Tmol C/yr (original data in Tg C/yr). Data sources: Boden et al. (2011).

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Carbon Cycle: Present-day and Pre-industrial

Carbon Cycle: Present-day and Pre-industrial

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Connecting the Carbon and Alkalinity Budgets

$$\frac{d\mathbf{C}}{dt} = C_{\text{hyd}} + C_{\text{vol}} + C_{\text{car-r}} - C_{\text{sed}}$$

$$\frac{d\mathbf{A}}{dt} = C_{\text{sil-a}} + 2C_{\text{car-r}} - 2C_{\text{sed}}$$

$$\frac{d\mathbf{A}}{dt} - 2 \times \frac{d\mathbf{C}}{dt} = C_{\mathsf{sil-a}} - 2 \times (C_{\mathsf{hyd}} + C_{\mathsf{vol}})$$

Basic Constraints of the System: Time Scales > 1 Myr

- $au_{\rm carbon} \simeq 100 \; {\rm kyr}$
- ullet $au_{
 m alkalinity} \simeq 50 \; {
 m kyr}$
- Long time-scales (typically > 1 Myr):

Global budgets of C and of A balanced

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Basic Constraints of the System: Time Scales < 1 Myr

On time scales of 10 - 100 kyr

- constraint fulfilled on average only ⇒ fluctuations possible
- classically, it has been assumed that hydrothermal and volcanic activity exhibit only small variability on these time scales

$$C_{\mathsf{hyd}} + C_{\mathsf{vol}} \cong \overline{C_{\mathsf{hyd}} + C_{\mathsf{vol}}} = \frac{1}{2} \ \overline{C_{\mathsf{sil-a}}}$$

Hence

$$\frac{d\mathbf{A}}{dt} - 2 \times \frac{d\mathbf{C}}{dt} = (C_{\mathsf{sil-a}} - \overline{C_{\mathsf{sil-a}}})$$

$$\frac{d\mathbf{A}}{dt} - 2 \times \frac{d\mathbf{C}}{dt} = \Delta C_{\mathsf{sil-a}}$$

Sensitivity Analysis: Variable Silicate Weathering

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Sensitivity Analysis: Variable Silicate Weathering

- Response at constant $[CO_3^{2-}]$
 - $C_T \approx [HCO_3^-] + [CO_3^{2-}]$
 - $A_{T} \approx [HCO_{3}^{-}] + 2[CO_{3}^{2-}]$ $\Rightarrow [CO_{3}^{2-}] \approx A_{T} - C_{T}$
- $[CO_3^{2-}] \approx constant \Rightarrow \frac{d\mathbf{A}}{dt} \frac{d\mathbf{C}}{dt} \approx 0$
- $\frac{d\mathbf{A}}{dt} 2 \times \frac{d\mathbf{C}}{dt} = \Delta C_{\text{sil-a}} \Rightarrow \frac{d\mathbf{C}}{dt} \approx -\Delta C_{\text{sil-a}}$

Sensitivity Analysis: Variable Carbonate Weathering

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

MBM — Ocean-Atmosphere Carbon Cycle Model

- MBM Multi-Box-Model
- One-box atmosphere and ten-box ocean with prescribed hydrodynamics and realistic hypsometry
- Tracers: pCO₂, DIC, alkalinity, PO₄, O₂, ¹³C, ¹⁴C
- Biogeochemical fluxes
 - POM: proportional to PO₄ influx into surface boxes
 - carbonate: proportional to POC
 - calcite/aragonite: prescribed partitioning of carbonate
- Coupled to 304 copies of the sediment model MEDUSA

MBM — Ocean-Atmosphere Carbon Cycle Model

MBM model reservoir distribution, and water circulation scheme (fluxes in Sverdrup).

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

MEDUSA — Early Diagenesis Model

- MEDUSA Model of Early Diagenesis in the Upper Sediment with Adaptable complexity
- bioturbated mixed-layer with 21 grid-points on top of a stack of thin layers (sediment core)
- solves time-dependent transport-reaction equations
- solids: calcite, aragonite, POM, clay
- solutes: CO_2 , HCO_3^- , CO_3^{2-} , O_2
- fully bi-directional exchange between the two zones Full description: Munhoven, Deep-Sea Res. II (2007) and Geosci. Model Dev. (2021)

MEDUSA — Early Diagenesis Model

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Pre-industrial Surface Sediment %CaCO₃

Bicarbonate Production Rate Scenarios

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

CO₂ Consumption Rate Scenarios

pCO₂ and Calcite Saturation Horizon Variations

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering

Summary

- Geochemical Carbon Cycle: complex system
 - ⇒ quantitative study requires models
- Four stages for development of a model
 - 1 Identification of the problem
 - Pormulation of the model
 - Resolution of the model
 - Interpretation of the results
- Illustration on an actual example

References cited

- T. A. Boden, G. Marland, and R. J. Andres. Global, regional, and national fossil-fuel CO₂ emissions (1751–2014) (v. 2017). Data base, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge, TN, 2011. URL https://doi.org/10.3334/CDIAC/00001_V2017.
- B. P. Boudreau. *Diagenetic Models and Their Implementation*. Springer-Verlag, Berlin (DE), 1997. ISBN 3-540-61125-8.
- G. Munhoven. Glacial-interglacial rain ratio changes: Implications for atmospheric CO₂ and ocean-sediment interaction. *Deep-Sea Res. II*, 54(5-7):722–746, 2007. doi: 10.1016/j.dsr2.2007.01.008.
- G. Munhoven. Model of Early Diagenesis in the Upper Sediment with Adaptable complexity MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching. *Geosci. Model Dev.*, 14(6): 3603–3631, 2021. doi: 10.5194/gmd-14-3603-2021.

Guy Munhoven

Continent-Ocean Interaction: Role of Weathering