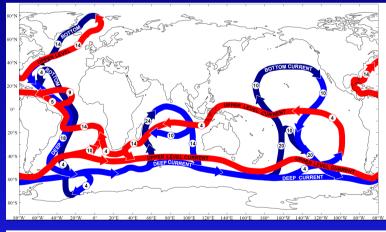
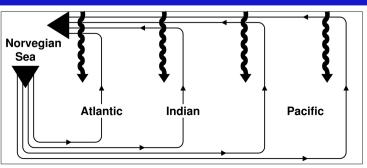

THE OCEAN CARBON CYCLE

21st February 2024

- 1 Box-model of the global ocean phosphorus, alkalinity, carbon
- 2 Pre-industrial model
- 3 Evolution during the industrial period
- 4 ¹³C isotopic evolution

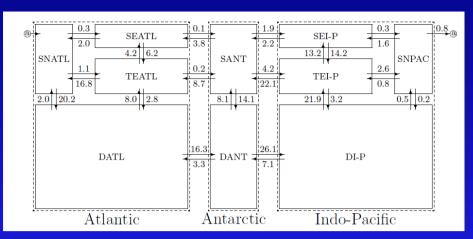

BOX-MODEL OF THE GLOBAL OCEAN Phosphorus, Alkalinity, Carbon

PHOSPHATE DISTRIBUTION IN THE OCEAN



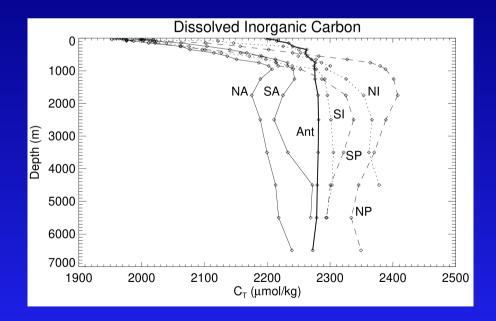
Ant – Antarctic; •A – Atlantic; •I – Indian; •P – Pacific; N• and S• – Northern and Southern parts of •, resp.

THERMOHALINE CIRCULATION

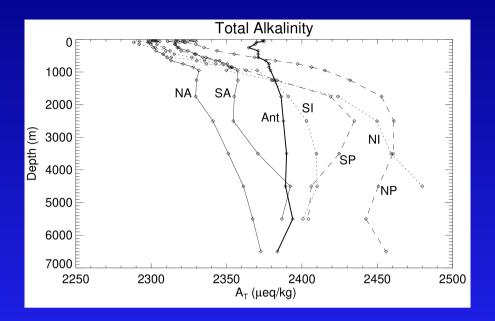


surface-todeep-sea gradient

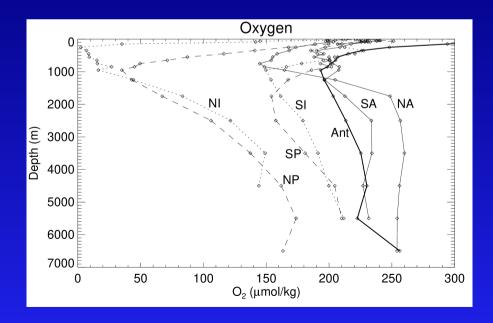
inter-basin gradient


MODEL STRUCTURE

Water fluxes in Sverdrup (Sv): 1 Sv = 10⁶ m³ s⁻¹


E	Basin	Input flux (m3/yr)	Output flux (m3/yr)	Reservoir budget (m3/yr)	Turnover Time (yr)
1 5	SNATL	0.68117760E+15	0.68117760E+15	0.0000000E+00	17.62
2 5	SEATL	0.26174880E+15	0.26174880E+15	0.0000000E+00	22.92
3 5	SANT	0.10312272E+16	0.10312272E+16	0.0000000E+00	70.79
4 5	SEI-P	0.52665120E+15	0.52665120E+15	0.0000000E+00	34.18
5 5	SNPAC	0.10722240E+15	0.10722240E+15	0.0000000E+00	121.24
6 1	TEATL	0.75686400E+15	0.75686400E+15	0.0000000E+00	72.67
7 1	TEI-P	0.12961296E+16	0.12961296E+16	0.0000000E+00	120.36
8 [DATL	0.82939680E+15	0.82939680E+15	0.0000000E+00	245.96
9 [DANT	0.11826000E+16	0.11826000E+16	0.0000000E+00	184.34
10 [DI-P	0.93031200E+15	0.93031200E+15	0.0000000E+00	628.82

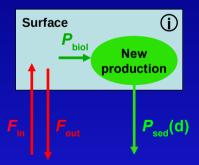
DIC DISTRIBUTION IN THE OCEAN


Ant – Antarctic; •A – Atlantic; •I – Indian; •P – Pacific; N• and S• – Northern and Southern parts of •, resp.

ALKALINITY DISTRIBUTION IN THE OCEAN

Ant – Antarctic; •A – Atlantic; •I – Indian; •P – Pacific; N• and S• – Northern and Southern parts of •, resp.

OXYGEN DISTRIBUTION IN THE OCEAN

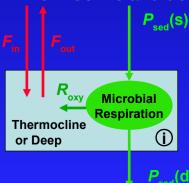


Ant – Antarctic; •A – Atlantic; •I – Indian; •P – Pacific; N• and S• – Northern and Southern parts of •, resp.

PRE-INDUSTRIAL MODEL

PHOSPHORUS: PRODUCTIVITY CONTROL

Surface boxes


Input Fluxes:

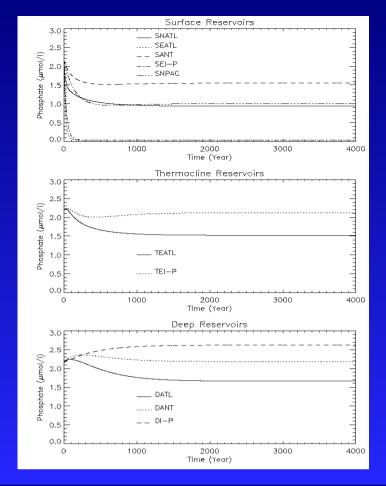
$$F_{in} = \sum_{j} w_{jj} c_{j}$$
 (advection) with $c_{j} = Q_{j}/V_{j}$

Output Fluxes:

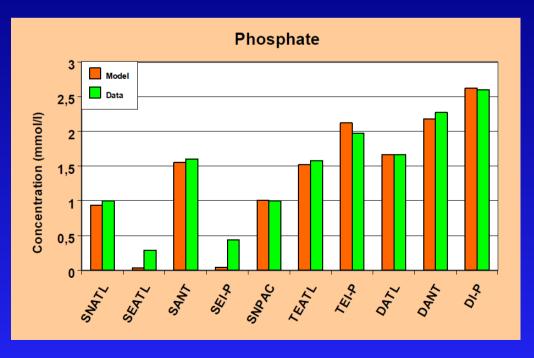
$$F_{\text{out}} = (\sum_{j} W_{ij}) c_{ij}$$
 (advection)
 $P_{\text{sed}}(d) = P_{\text{biol}} = \Phi_{\text{ut}} \cdot F_{\text{in}}$ (new production)
 $\rightarrow \Phi_{\text{ut}}$ lower at high latitudes

Thermocline and deep boxes

Input Fluxes:


$$F_{in} = \sum_{j} w_{ji} c_{j}$$
 (advection)
 $R_{oxy} = k_{oxy} \cdot P_{sed}(s)$ (microbial respiration)
 $P_{sed}(d) = P_{sed}(s) \cdot R_{oxy}$

Output Fluxes:


$$F_{\text{out}} = (\sum_{i} w_{ij}) c_{i}$$
 (advection)

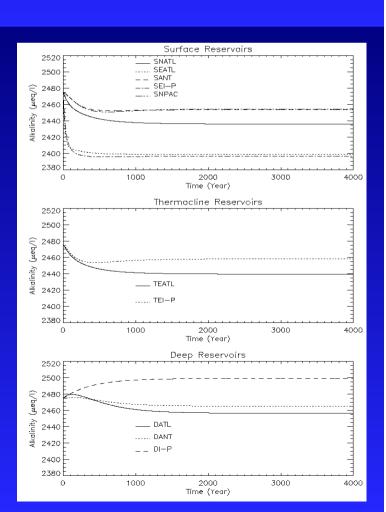
PRE-INDUSTRIAL STEADY-STATE SOLUTION (PHOSPHORUS)

- → Integration: 4000 years
- → Initial conditions: Homogeneous ocean (c = 2.164 µmol P/litre)

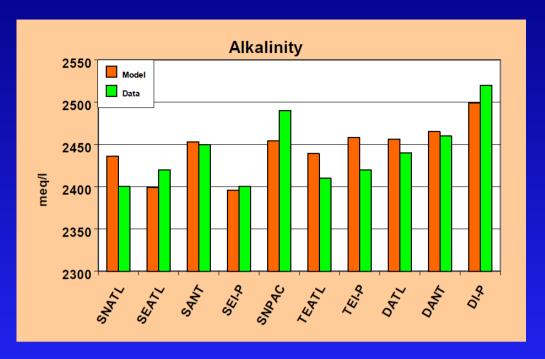
COMPARISON WITH DATA: PHOSPHORUS

Data: Geosecs ('70)

CARBON AND ALKALINITY

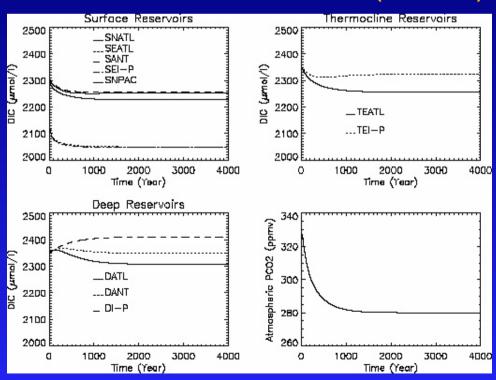

- Model linked to the phosphorus model through the usage elemental ratios
- At the surface: C_{org} and CaCO₃ (aragonite/calcite) production
 - \rightarrow C_{org}: C/P = 106/1 (Redfield)
 - \rightarrow CaCO₃: r_{carb} = CaCO₃/C_{org} (adjustable parameter)
- In the thermocline: partial oxidation of $C_{org} (\rightarrow k_{oxy})$
 - → C/P = 106/1 (Redfield)
- At depth:
 - \rightarrow oxidation of the remaining $C_{\text{org}} (\rightarrow 1-k_{\text{oxy}})$
 - → dissolution of CaCO₃
- In each box: pH calculation and carbonate speciation
- Exchange with the atmosphere in each surface reservoir i:

$$\rightarrow F_{a0} = k_{a0}$$
. area(i). (pCO₂ - pCO₂(i))


PRE-INDUSTRIAL STEADY-STATE SOLUTION (ALKALINITY)

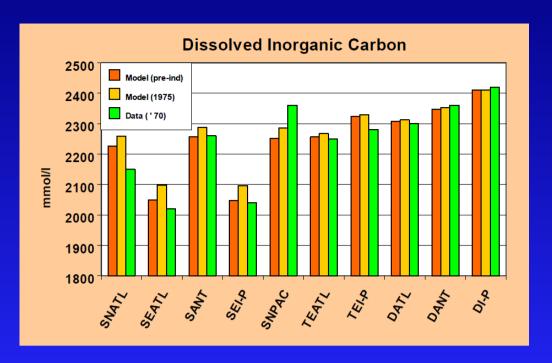
- → integration: 4000 years
- → initial conditions: homogeneous ocean (Alk = 2474 µeq/litre)

$$\rightarrow$$
 $r_{carb} = CaCO_3/C_{org}$



COMPARISON WITH DATA: ALKALINITY

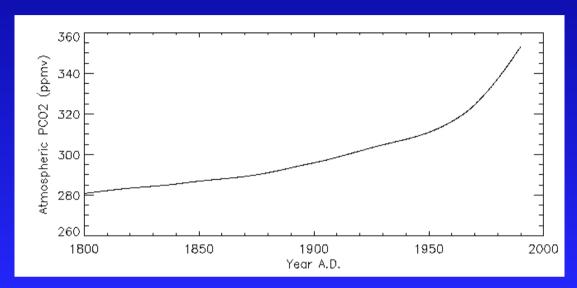
Data: Geosecs ('70)


PRE-INDUSTRIAL STEADY STATE (CARBON)

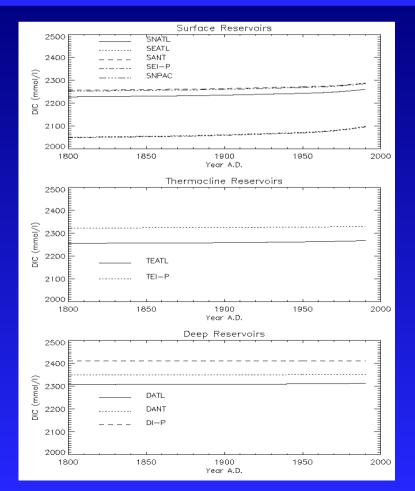
Initial conditions:

Homogeneous ocean (DIC = 2350 μmol/I), pCO₂(atm) = 280 ppmv

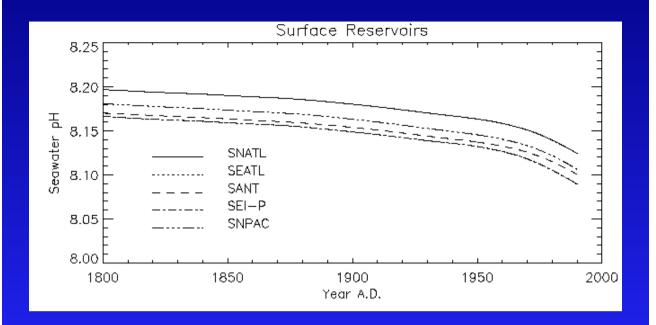
COMPARISON WITH DATA: CARBON

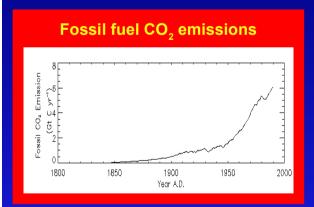


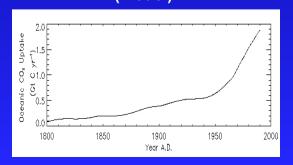
Data: Geosecs ('70)

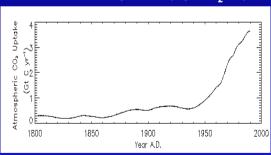

EVOLUTION DURING THE INDUSTRIAL PERIOD

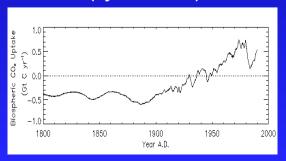
FORCING OF THE MODEL FOR THE INDUSTRIAL PERIOD


- → Initial conditions in 1800 provided by the previously calculated pre-industrial steady state
- → Evolution of atmospheric CO₂ prescribed from 1800 to 1990


EVOLUTION OF DISSOLVED INORGANIC CARBON


EVOLUTION OF PH IN THE SURFACE RESERVOIRS


FLUX BALANCE OF ATMOSPHERIC CO₂ FOR THE INDUSTRIAL PERIOD


Transfer to the ocean (model)

Rate of change in the atmosphere (dpCO₂/dt)

Transfer to the biosphere (by difference)

ATMOSPHERIC CO₂ BALANCE (1980-1990) (Gt C yr⁻¹)

SOURCES

Fossil fuels & cements Land-use change	This work 5.44 1.57	IPCC 1995 5.5 ± 0.5 1.6 ± 1.0
Total	7.01	7.1 ± 1.0
SINKS		
Atmosphere Ocean (Model)	3.40 1.71	3.3 ± 0.2 2.0 ± 0.8
Difference (→ terrestrial biosphere)	1.90	1.8 ± 1.5

13C ISOTOPIC EVOLUTION

CARBON ISOTOPES

Three naturally occuring carbon isotopes:

¹²C ~ 98.94 ± 0.10%

 13 C ~ 1.06 ± 0.10%

¹⁴C (radiogenic, radioactive) trace amounts

where:

 C_i = carbon content of reservoir i

 F_{ii} = flux entering reservoir i (from reservoir j)

 F_{ii} = flux leaving reservoir i (for reservoir j)

 $\delta_i = \delta^{13}$ C of the carbon in reservoir *i*

 $\delta_{ii} = \delta^{13}$ C of flux F_{ii} (into reservoir i)

 $\delta_{ij} = \delta^{13}$ C of flux F_{ij} (out of reservoir i)

Notice: output fluxes only have to be considered if they are subject to fractionation, i. e., if $\Delta = \delta_{ii} - \delta_i \neq 0$

ISOTOPIC EVOLUTION EQUATION

The equation describing the evolution of the isotopic composition of a reservoir *i* in time can be written (approximation):

$$d\delta_{i} / dt = \left[\sum_{j \neq i}^{j} F_{ij} \left(\delta_{ji} - \delta_{i} \right) - \sum_{j \neq i}^{j} F_{ij} \left(\delta_{ij} - \delta_{i} \right) \right] / C_{i}$$

where:

 C_i = carbon content of reservoir i

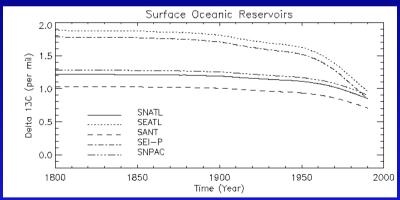
 F_{ii} = flux entering reservoir i (from reservoir j)

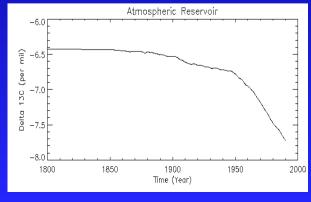
 \vec{F}_{ii} = flux leaving reservoir *i* (for reservoir *j*)

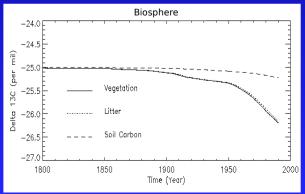
 $\delta_i = \delta^{13}$ C of the carbon in reservoir *i*

 $\delta_{ii} = \delta^{13}$ C of flux F_{ii} (into reservoir i)

 $\delta_{ii} = \delta^{13}$ C of flux F_{ii} (out of reservoir i)


Notice: output fluxes only have to be considered if they are subject to fractionation, i. e., if $\Delta = \delta_{ii} - \delta_i \neq 0$


PRE-INDUSTRIAL STEADY-STATE SOLUTION $(\delta^{13}C)$


- → integration: 3000 years
- → initial conditions: homogeneous ocean (δ¹³C = 0.259 ‰)

EVOLUTION OF δ^{13} C DURING THE INDUSTRIAL PERIOD (coupled ocean-atmosphere-biosphere model)

