Isotopes in Environmental Modelling A Primer

Guy Munhoven

Institut d'Astrophysique et de Géophysique (B5c Build.) Room 0/13eMail: Guy.Munhoven@ulg.ac.be Phone: 04-3669771

26th February 2025 & 5th March 2025

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Plan

- Introduction: isotope facts and notation
- ullet Isotope ratios, δ 's and standards
- Mass balance relationships
- Isotope effects: fractionation, α , ε , Δ
- Evolution equations: approximate and exact

Isotope Notation

- Nuclei of isotopes of a given element E
 - all contain the same number of protons (Z)
 - may have different numbers of neutrons (N)
 - each have a mass number A = Z + N
- Isotopes denoted by

 $_{Z}^{A}\mathsf{E}$

- Subscript Z generally omitted (redundant)
- Examples:

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Atomic Weights and Abundances of H, C, N, O Isotopes

Element	Isotope	Atomic weight	Abundance
		(Da)	(atom%)
Hydrogen $(Z=1)$	1.0079		
	¹ H (also: H)	1.007825	99.985
	² H (also: D)	2.014102	0.015
Carbon $(Z=6)$		12.011	
,	¹² C	12.00000	98.90
	¹³ C	13.0035	1.10
Nitrogen ($Z = 7$)		14.0067	
,	^{14}N	14.003074	99.63
	^{15}N	15.000109	0.37
Oxygen $(Z=8)$		15.9994	
,	¹⁶ O	15.994915	99.76
	¹⁷ O	16.999131	0.04
	¹⁸ O	17.999160	0.20
Source: Crice (1000)			

Source: Criss (1999)

Miscellaneous Isotope Facts

- 338 naturally occurring nuclides
- 286 of these are said to be primordial,
 i. e., have existed since Earth's formation
 - 251 stable isotopes
 - 35 long-lived radioisotopes ($\tau_{1/2} > 100 \, \mathrm{Myr}$)
- ullet 52 short-lived radioisotopes ($au_{1/2} < 100\,\mathrm{Myr}$)
- Primordial elements have between 1 and 10 stable isotopes
 - Sn has greatest number of stable isotopes: 10
 - Be, F, P (+ 17 others) have only one natural isotope (and that is stable)
 - Bi $(\tau_{1/2} = 2.01 \times 10^{19} \, \text{yr})$ and Pa $(\tau_{1/2} = 32,760 \, \text{yr})$ have only one natural isotope (and that is radioactive)

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Controls on Isotope Distributions

- Radioactive decay
 - decay of an unstable nucleus to form another (radiogenic) one
- Cosmogenic production
- Mixing
- Fractionation during physical and chemical processes
 - isotope exchange reactions: equilibrium effects
 - kinetic processes, where molecules with heavy and light isotopes react at different rates: non-equilibrium effects

- Radioactive isotopes
 - act as clocks or dyes (colors)
- Stable isotopes
 - act as dyes (colors)
- Age determination
- Cycling rate determination

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Measuring Isotopic Compositions: Mass Spectrometer

Image: Wikimedia

Setup for CO₂

$$m/q = 44$$
: $^{12}C(^{16}O)_2^+$
 $m/q = 45$: $^{13}C(^{16}O)_2^+$, $^{12}C^{16}O^{17}O^+$
 $m/q = 46$: $^{12}C^{16}O^{18}O^+$, $^{13}C^{16}O^{17}O^+$,
 $^{12}C(^{17}O)_2^+$

Nomenclature for Isotopic Data

• Number of isotopes of mass number *i* of element E in substance P (number of nuclei):

$$N(^{i}E)_{P}$$

• Isotope ratio:

$$R(^{i}E/^{j}E)_{P} = \frac{N(^{i}E)_{P}}{N(^{j}E)_{P}}$$

• Isotope-number fraction:

$$X(^{i}\mathsf{E})_{\mathsf{P}} = \frac{N(^{i}\mathsf{E})_{\mathsf{P}}}{\sum_{k} N(^{k}\mathsf{E})_{\mathsf{P}}}$$

(Following Coplen, 2011)

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Notation

Most often, context allows to simplify notations without ambiguity

$$N(^{i}\mathsf{E})_{\mathsf{P}} \sim {}^{i}N_{\mathsf{P}}$$
 $R(^{i}\mathsf{E}_{\mathsf{P}}/^{j}\mathsf{E})_{\mathsf{P}} \sim {}^{i}R_{\mathsf{P}}$
 $X(^{i}\mathsf{E})_{\mathsf{P}} \sim {}^{i}X_{\mathsf{P}}$

Examples:

$$N(^{18}O)_{P} \sim ^{18}N_{P}$$
 $R(^{18}O/^{16}O)_{P} \sim ^{18}R_{P}$
 $X(^{18}O)_{P} \sim ^{18}X_{P}$
 $R(^{17}O/^{16}O)_{P} \sim ^{17}R_{P}$
 $X(^{17}O)_{P} \sim ^{17}X_{P}$

Reference Standards: δ Notation

Precise absolute isotope ratio measurements difficult

Example: NBS-19 calcite

- standard reference material for carbon isotope measurements
- $^{13}R_{\text{NBS19}} = 0.011202 \pm 0.000028$: relative error 2.5 ‰
- relative deviation of ^{13}R of NBS19 from that of another material can be measured to within $\pm 0.003\%$

Routine measurements made by comparing a sample's isotope ratio to that of a reference material

- with a constant and homogeneous isotopic composition
- ideally a standard reference material (SRM), but often specific to a given laboratory
- with an isotopic composition possibly not precisely known

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Reference Standards: δ Notation

 Measured isotope ratio of sample P reported as the relative difference with respect to a standard

$$\delta(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{P}/\mathsf{std}} = \frac{R(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{P}} - R(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{std}}}{R(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{std}}} = \frac{R(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{P}}}{R(^i\mathsf{E}/^j\mathsf{E})_{\mathsf{std}}} - 1$$

- Other notations: $\delta({}^{i}\mathsf{E}/{}^{j}\mathsf{E})_{\mathsf{P/std}} = \delta{}^{i}\mathsf{E}_{\mathsf{P/std}} = \delta{}^{i}\mathsf{E}$
- ullet values typically of the order of 10^{-3} : expressed in %
- No extraneous scaling factor 1000 to be included in the definition!

Reference Standards: δ Notation

- $\delta(^{i}E/^{j}E)_{P/std} < 0$: $R(^{i}E/^{j}E)_{P} < R(^{i}E/^{j}E)_{std}$ \rightarrow isotopic composition of P *lighter* than that of the standard
- $\delta(^{i}\mathsf{E}/^{j}\mathsf{E})_{\mathsf{P}/\mathsf{std}} = 0$: $R(^{i}\mathsf{E}/^{j}\mathsf{E})_{\mathsf{P}} = R(^{i}\mathsf{E}/^{j}\mathsf{E})_{\mathsf{std}}$
- $\delta(^{i}E/^{j}E)_{P/std} > 0$: $R(^{i}E/^{j}E)_{P} > R(^{i}E/^{j}E)_{std}$ \rightarrow isotopic composition of P *heavier* than that of the standard

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Expressing Isotope Abundances: General Definitions

Microscopic (Atomic) Quantity Macroscopic Quantity

Source: Coplen (Rapid Commun. Mass Spectrom., 2011)

Example: ^{13}C and ^{12}C

Macroscopic Quantity

Source: Coplen (Rapid Commun. Mass Spectrom., 2011)

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Common Reference Standards

Standard	Ratio	Value (95% confidence)
SMOW	D/H ¹⁸ O/ ¹⁶ O	0.00015576 ± 0.00000010 0.00200520 ± 0.00000043
	$^{17}O/^{16}O$	0.00200320 ± 0.00000043 0.000373 ± 0.000015
PDB	13 C $/^{12}$ C 18 O $/^{16}$ O 17 O $/^{16}$ O	$\begin{array}{c} 0.0112372\pm0.0000029 \\ 0.0020671\pm0.0000021 \\ 0.000379\pm0.000015 \end{array}$
NBS19	$^{13}{\rm C}/^{12}{\rm C}$	0.011202 ± 0.000028
Air N ₂	$^{15}\mathrm{N}/^{14}\mathrm{N}$	0.0036765 ± 0.0000081
Canyon Diablo Troilite (CDT)	$^{34}S/^{32}S$	0.0450045 ± 0.0000093

After Hoefs (2015, Table 1.6, p. 33) and Prohaska et al. (2022).

Distribution of Carbon-13 in Nature

Source: Wagner et al. (Encycl. Geochem. 2007)

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Material Balance Relations

Multicomponent chemical system (Σ) with n parts/compartments Overall system isotope ratio $R_{\Sigma} = N(^{i}E)_{\Sigma}/N(^{j}E)_{\Sigma}$

$$R_{\Sigma} = \frac{\sum_{p=1}^{n} N(^{i}\mathsf{E})_{p}}{N(^{j}\mathsf{E})_{\Sigma}} = \frac{N(^{i}\mathsf{E})_{1} + \dots + N(^{i}\mathsf{E})_{n}}{N(^{j}\mathsf{E})_{\Sigma}}$$

$$R_{\Sigma} = \frac{N(^{j}\mathsf{E})_{1}}{N(^{j}\mathsf{E})_{\Sigma}} \left(\frac{N(^{i}\mathsf{E})_{1}}{N(^{j}\mathsf{E})_{1}} \right) + \dots + \frac{N(^{j}\mathsf{E})_{n}}{N(^{j}\mathsf{E})_{\Sigma}} \left(\frac{N(^{i}\mathsf{E})_{n}}{N(^{j}\mathsf{E})_{n}} \right)$$
$$= \frac{N(^{j}\mathsf{E})_{1}}{N(^{j}\mathsf{E})_{\Sigma}} R_{1} + \dots + \frac{N(^{j}\mathsf{E})_{n}}{N(^{j}\mathsf{E})_{\Sigma}} R_{n}$$

Material Balance Relations

Multicomponent chemical system (Σ) with n parts/compartments Overall system isotope ratio $R_{\Sigma} = N(^{i}E)_{\Sigma}/N(^{j}E)_{\Sigma}$

$$R_{\Sigma} = \frac{\sum_{p=1}^{n} N(^{i}\mathsf{E})_{p}}{N(^{j}\mathsf{E})_{\Sigma}} = \frac{N(^{i}\mathsf{E})_{1} + \dots + N(^{i}\mathsf{E})_{n}}{N(^{j}\mathsf{E})_{\Sigma}}$$

$$R_{\Sigma} = \frac{N({}^{j}\mathsf{E})_{1}}{N({}^{j}\mathsf{E})_{\Sigma}} \left(\frac{N({}^{i}\mathsf{E})_{1}}{N({}^{j}\mathsf{E})_{1}} \right) + \dots + \frac{N({}^{j}\mathsf{E})_{n}}{N({}^{j}\mathsf{E})_{\Sigma}} \left(\frac{N({}^{i}\mathsf{E})_{n}}{N({}^{j}\mathsf{E})_{n}} \right)$$

$$R_{\Sigma} = \sum_{p=1}^{n} \chi_p R_p$$

where χ_p is the system's mole fraction of the *reference isotope* j E contained in part p

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Mole Fraction vs. Isotope-Number/Isotope-Amount Fraction

Do not confuse

• the isotope-number fraction of an isotope ⁱE in a substance P

$$X(^{i}\mathsf{E})_{\mathsf{P}} = \frac{N(^{i}\mathsf{E})_{\mathsf{P}}}{\sum_{k} N(^{k}\mathsf{E})_{\mathsf{P}}}$$

- \rightarrow fraction of ⁱE atoms in all E atoms of a given P
- the mole fraction χ_p of isotope $^j E$ of a part p in a system

$$\chi_p = \frac{N({}^j\mathsf{E})_p}{N({}^j\mathsf{E})_\Sigma} = \frac{N({}^j\mathsf{E})_p}{\sum_p N({}^j\mathsf{E})_p}$$

 \rightarrow fraction of ^jE atoms in the system that are contained in p

Material Balance Relations With δ 's

Since

$$\delta_{p/{
m std}} = rac{R_p}{R_{
m std}} - 1 \quad \Leftrightarrow \quad R_p = R_{
m std} (\delta_{p/{
m std}} + 1)$$

$$R_{\Sigma} = \sum_{p=1}^{n} \chi_p R_p$$
 transforms to

$$R_{\mathsf{std}}(\delta_{\Sigma/\mathsf{std}}+1) = \sum_{p=1}^n \chi_p R_{\mathsf{std}}(\delta_{p/\mathsf{std}}+1) = R_{\mathsf{std}} \sum_{p=1}^n \chi_p (\delta_{p/\mathsf{std}}+1),$$

which simplifies to

$$\delta_{\Sigma/{\sf std}} = \sum_{
ho=1}^n \chi_
ho \, \delta_{
ho/{\sf std}}$$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Fractionation: Summary Rules

Mass differences between isotopes of a given element lead to different behaviour during physico-chemical processes:

- ⇒ Fractionation of isotopic ratios
- Equilibrium Fractionation (Bigeleisen, 1965)

 "The heavy isotope goes preferentially to the chemical compound in which the element is bound most strongly."
- Kinetic Fractionation (Bigeleisen, 1949)
 - "[...] when the different isotopic atoms are chemically bound as molecules in the reacting species, the light molecule usually will have a greater rate constant than the heavy molecule."

Some Physical Properties of Ordinary and Heavy Water

Property	H ₂ O	D_2O
Molar mass	18.01528	20.02748 g
Vapor pressure at 25 °C	31.672	27.390 hPa
Melting point	0.00	3.82 °C
Boiling point	100.00	101.42 °C
Critical temperature point	373.99	370.74 °C
Density at 25 °C	0.9970	$1.1044~\mathrm{gcm^{-3}}$
Viscosity at 25 °C	8.93	11.0 mP
Dissociation constant	1.0×10^{-14}	1.95×10^{-15}

Source: Criss (1999)

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Equilibrium Fractionation: Fractionation Factor α

For two phases A and B with common isotope pairs, we define

$$\alpha_{A/B} = \alpha_{(A-B)} = \frac{R_A}{R_B}$$

Example:

$$\mathsf{H_2O_{(I)}} + \mathsf{HDS_{(g)}} \leftrightarrows \mathsf{HDO_{(I)}} + \mathsf{H_2S_{(g)}}$$

- Phase A: H₂O+HDO (water 'h2o')
- Phase B: H₂S + HDS (hydrogen sulfide 'h2s')

$$\alpha_{(\text{h2o-h2s})} = \frac{R(\text{D/H})_{\text{h2o}}}{R(\text{D/H})_{\text{h2s}}} = \frac{\frac{[\text{HDO}]}{[\text{H_2O}]}}{\frac{[\text{HDS}]}{[\text{H_2S}]}} = \frac{[\text{HDO}] \ [\text{H_2S}]}{[\text{H_2O}] \ [\text{HDS}]} = K = 2.35$$

Fractionation Constant

- Fractionation factors involving H isotopes highest
- ullet Most often $lpha_{(\mathsf{A}-\mathsf{B})} \simeq 1$ and for practical usage we define

Fractionation Constant

$$\varepsilon_{(A-B)} = \alpha_{(A-B)} - 1$$

• Example:

$$^{12}\mathrm{CO}_{2(aq)} + \mathrm{H}^{13}\mathrm{CO}_{3}^{-} \leftrightarrows ^{13}\mathrm{CO}_{2(aq)} + \mathrm{H}^{12}\mathrm{CO}_{3}^{-}$$

Fractionation constant and factor at 25 °C (Mook, 1986):

- $\varepsilon_{(CO_2-HCO_3^-)} = -8.97\% = -0.00897$
- $\quad \boldsymbol{\alpha}_{(\mathsf{CO}_2 \mathsf{HCO}_3^-)} = \boldsymbol{\varepsilon}_{(\mathsf{CO}_2 \mathsf{HCO}_3^-)} + 1 = -0.00897 + 1 = 0.99103$

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Alternative Quantification of Isotope Effects

Isotopic difference

$$\Delta_{(\mathsf{A}-\mathsf{B})/\mathsf{std}} = \delta_{\mathsf{A}/\mathsf{std}} - \delta_{\mathsf{B}/\mathsf{std}}$$

- ullet In $lpha_{(A-B)}$ instead of $lpha_{(A-B)}$
 - for $lpha_{(\mathsf{A}-\mathsf{B})} \simeq \mathsf{1}$, i. e., $arepsilon_{(\mathsf{A}-\mathsf{B})} \ll \mathsf{1}$

$$\ln lpha_{(\mathsf{A}-\mathsf{B})} = \ln (1 + arepsilon_{(\mathsf{A}-\mathsf{B})}) \simeq arepsilon_{(\mathsf{A}-\mathsf{B})}$$

• for perfect gases, $\ln \alpha_{\rm (A-B)}$ varies as $1/T^2$ and 1/T at high and low temperatures, resp.

Fractionation Constant and δ Values

Since $R_{\sf A}=R_{\sf std}(\delta_{\sf A/std}+1)$ and $R_{\sf B}=R_{\sf std}(\delta_{\sf B/std}+1)$, we have

$$\begin{array}{ll} \varepsilon_{(\mathsf{A}-\mathsf{B})} &=& \alpha_{(\mathsf{A}-\mathsf{B})}-1 \\ &=& \frac{R_\mathsf{A}}{R_\mathsf{B}}-1 \\ &=& \frac{\delta_{\mathsf{A}/\mathsf{std}}+1}{\delta_{\mathsf{B}/\mathsf{std}}+1}-1 \\ &=& \frac{\delta_{\mathsf{A}/\mathsf{std}}-\delta_{\mathsf{B}/\mathsf{std}}}{\delta_{\mathsf{B}/\mathsf{std}}+1} \\ &=& \frac{\Delta_{(\mathsf{A}-\mathsf{B})/\mathsf{std}}}{\delta_{\mathsf{B}/\mathsf{std}}+1} \end{array}$$

If
$$\delta_{ extsf{B/std}} \ll 1$$
: $arepsilon_{ extsf{(A-B)}} \simeq \Delta_{ extsf{(A-B)/std}}$

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Please Notice That ...

- ullet $lpha_{(A-B)}$ and $arepsilon_{(A-B)}$ depend only on $R_{\mathsf{A}}/R_{\mathsf{B}}$
- $\Delta_{(A-B)}$ depends on R_A , R_B , and ... R_{std}
- $\varepsilon_{(A-B)} \simeq \Delta_{(A-B)}$ is generally an acceptable approximation, but be aware that
 - ullet differences become significant as δ range expands
 - large errors to be expected for D/H calculations in general

Who is Afraid of More Confusion?

- Occasional confusion between fractionation factor and fractionation constant in the literature
 - fractionation factor for multiplication (exact results)
 - fractionation constant for addition (approximate results)
 - ullet confusion extends to the usage of the symbols lpha and arepsilon
- ullet Some authors denote lpha-1 by Δ instead of arepsilon
- ullet Some authors denote $\delta_{\mathsf{A}} \delta_{\mathsf{B}}$ by arepsilon
- Always double-check
 - definitions used
 - approximations adopted
- In your own work
 - clearly state adopted definitions and approximations
 - stick to IUPAC recommendations (Coplen, 2011) anyway

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Non-Equilibrium fractionation

- kinetic isotope effects: reaction rates of heavy and light isotopes are different
- incomplete or unidirectional processes
- evaporation
- metabolic effects
- diffusion

Kinetic Fractionation: Fractionation Factor $\overline{lpha_{\mathsf{S}/\mathsf{R}}}$

For a process that transforms

- ullet a substrate or source with one isotope ratio R_S
- to a product with an isotope ratio R_P

we define the isotope effect or fractionation factor

Fractionation Factor

$$\alpha_{S/P} = \alpha_{(S-P)} = \frac{R_S}{R_P}$$

and the related $\varepsilon_{(S-P)}$ and $\Delta_{(S-P)}$ as before.

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Mass Balance Equations

Reservoir with content $n \equiv n(E)$:

$$\frac{dn}{dt} = \sum J_{\text{in}}(\mathsf{E}) - \sum J_{\text{out}}(\mathsf{E})$$

where

- $J_{in}(E)$ denotes source terms (input, reaction, ...)
- $J_{\text{out}}(\mathsf{E})$ denotes sink terms (output, reaction, decay, . . .)
- E includes isotopes i E and j E:

$$n(\mathsf{E}) = n({}^{j}\mathsf{E}) + \dots + n({}^{i}\mathsf{E}) + \dots$$

Question

How are the mass balance equations for ${}^{i}E$, ${}^{j}E$ and E related?

Solve a coupled differential equation problem:

- given
 - t_0 and t_{end} (time interval)
 - $n(t_0) = n_0$
 - $\delta^{13} C(t_0) = \delta_0$
 - fractionation parameters of all involved processes
- determine, for $t_0 \le t \le t_{\text{end}}$
 - n(t)
 - $\delta^{13}\mathsf{C}(t)$

Guy Munhoven

Isotopes in Environmental Modelling – A Primer

Mass Balance Variables: Exact Relationships

$$n({}^{j}E) = x({}^{j}E) \cdot n(E)$$

$$n({}^{i}E) = x({}^{i}E) \cdot n(E)$$

$$n({}^{i}E) = r({}^{i}E/{}^{j}E) \cdot n({}^{j}E)$$

$$J({}^{j}E) = x({}^{j}E) \cdot J \cdot J(E)$$

$$J({}^{i}E) = x({}^{i}E) \cdot J \cdot J(E)$$

$$J({}^{i}E) = r({}^{i}E/{}^{j}E) \cdot J \cdot J({}^{j}E)$$

Mass Balance Variables: Approximate Relationships

- In common isotope systems (e. g., H, C, N, O), the reference isotope ^{j}E strongly dominant: $x(^{j}E) > 98\%$
- In this case:

$$n(E) \simeq n(^{j}E)$$

 $x(^{i}E) \simeq r(^{i}E/^{j}E)$
 $n(^{i}E) \simeq r(^{i}E/^{j}E) \cdot n(E)$
 $J(E) \simeq J(^{j}E)$
 $J(^{i}E) \simeq r(^{i}E/^{j}E)_{J} \cdot J(E)$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Mass Balance Equations for C-13

Exact relationships:

$$\begin{array}{rcl}
^{13}n & = & ^{13}x \cdot n(C) \\
^{13}n & = & ^{13}r \cdot ^{12}n \\
^{13}J & = & ^{13}x_J \cdot J(C) \\
^{13}J & = & ^{13}r_J \cdot ^{12}J
\end{array}$$

Approximations:

$$n(C) \simeq {}^{12}n$$
 ${}^{13}n \simeq {}^{13}r \cdot n(C)$
 $J(C) \simeq {}^{12}J$
 ${}^{13}J \simeq {}^{13}r_J \cdot J(C)$

Approximate Evolution Equation for $\delta^{13} {\sf C}$

Evolution equations for $n \equiv n(C)$ and ^{13}n :

$$\frac{dn}{dt} = \sum J_{in}(C) - \sum J_{out}(C)$$

$$\frac{d^{13}n}{dt} = \sum {}^{13}J_{in} - \sum {}^{13}J_{out}$$

Introduce approximate relationships for ^{13}n , $^{13}J_{\rm in}$ and $^{13}J_{\rm out}$:

$$\frac{d^{13}n}{dt} \simeq \frac{d}{dt}(^{13}r \cdot n)$$

$$\sum_{i=1}^{13} J_{in} - \sum_{i=1}^{13} J_{out} \simeq \sum_{i=1}^{13} r_{J_{in}} \cdot J_{in}(C) - \sum_{i=1}^{13} r_{J_{out}} \cdot J_{out}(C)$$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Approximate Evolution Equation for δ^{13} C

Approximate evolution equation for ^{13}n :

$$\frac{d}{dt}(^{13}r \cdot n) \simeq \sum_{i=1}^{13} r_{J_{in}} \cdot J_{in}(C) - \sum_{i=1}^{13} r_{J_{out}} \cdot J_{out}(C)$$

The left-hand side develops as

$$\frac{d}{dt}(^{13}r \cdot n) = \frac{d^{13}r}{dt} \cdot n + ^{13}r \cdot \frac{dn}{dt}$$

$$= \frac{d^{13}r}{dt} \cdot n + ^{13}r \cdot \left(\sum J_{in}(C) - \sum J_{out}(C)\right)$$

Equating the two right-hand sides and rearranging leads to

$$\frac{d^{13}r}{dt} \cdot n = \sum_{i=1}^{n} (1^{13}r_{J_{in}} - 1^{13}r) \cdot J_{in}(C) - \sum_{i=1}^{n} (1^{13}r_{J_{out}} - 1^{13}r) \cdot J_{out}(C)$$

Approximate Evolution Equation for δ^{13} C

Since $^{13}r = ^{13}r_{\rm std}(\delta^{13}C+1)$, $^{13}r_{J_{\rm in}} = ^{13}r_{\rm std}(\delta^{13}C_{J_{\rm in}}+1)$, etc., we finally get after simplification:

δ^{13} C Equation (approximate)

$$\frac{d\delta^{13}C}{dt} = \left(\sum (\delta^{13}C_{J_{in}} - \delta^{13}C) \cdot J_{in}(C) - \sum (\delta^{13}C_{J_{out}} - \delta^{13}C) \cdot J_{out}(C) \right) / n$$

where

- ullet $\delta^{13}{
 m C}_{J_{
 m out}}=\delta^{13}{
 m C}$ if the process behind $J_{
 m out}$ does not fractionate
- $\delta^{13} C_{J_{\rm out}}$ is derived from $\delta^{13} C$ using the related fractionation information $\Delta_{\rm (S-P)} \simeq \varepsilon_{\rm (S-P)}$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Evolution Equation for ^{13}x

• Repeat the previous developments with ^{13}x instead of ^{13}r :

$$\frac{d^{13}x}{dt} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$$

 \bullet ^{13}x , ^{13}r and $\delta^{13}\mathsf{C}$ are related by

$$^{13}x = \frac{^{13}r}{1 + ^{13}r} = \frac{^{13}r_{\text{std}}(\delta^{13}C + 1)}{1 + ^{13}r_{\text{std}}(\delta^{13}C + 1)}$$

and

$$\delta^{13}C = \frac{^{13}r}{^{13}r_{std}} - 1$$
 with $^{13}r = \frac{^{13}\chi}{1 - ^{13}\chi}$

In Practice: Do's and Don'ts . . .

From

$$\frac{d}{dt}(^{13}r \cdot n) \simeq \sum_{i=1}^{13} r_{J_{in}} \cdot J_{in}(C) - \sum_{i=1}^{13} r_{J_{out}} \cdot J_{out}(C)$$

and

$$\frac{d}{dt}(^{13}r \cdot n) = \frac{d^{13}r}{dt} \cdot n + ^{13}r \cdot \frac{dn}{dt},$$

one might be tempted to continue with

$$\frac{d^{13}r}{dt} \cdot n = \sum_{i=1}^{13} r_{J_{in}} \cdot J_{in}(C) - \sum_{i=1}^{13} r_{J_{out}} \cdot J_{out}(C) - \frac{13}{r} \cdot \frac{dn}{dt}$$

to reuse an already calculated dn/dt, writing . . .

$$\frac{d\delta^{13}C}{dt} = \left(\sum \delta^{13}C_{J_{\text{in}}} \cdot J_{\text{in}}(C) - \sum \delta^{13}C_{J_{\text{out}}} \cdot J_{\text{out}}(C) - \delta^{13}C \cdot \frac{dn}{dt}\right) / n$$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

In Practice: Do's and Don'ts ...

- Mathematically speaking, the two are identical
- However, numerically speaking, they are worlds apart:
 - Addition of many small terms in the "Do" version: terms in $J_{\text{out}}(C)$ are even 0 in the absence of fractionation
 - Difference of two or three potentially large terms in the "Don't" version: danger of catastrophic cancellation

Alternatively: Evolution Equations for ^{13}n and ^{13}n

- Derive initial condition $^{13}n(t_0) = ^{13}n_0$ using
 - $^{13}r_0 = ^{13}r_{\rm std}(\delta_0 + 1)$
 - $^{13}x_0 = \frac{^{13}r_0}{1 + ^{13}r_0}$
 - $^{13}n_0 = ^{13}x_0 \cdot n_0$
- 2 Calculate n(t) and $^{13}n(t)$
- **3** Whenever $\delta^{13}C(t)$ is required
 - $\bullet ^{13}x = \frac{^{13}n(t)}{n(t)}$
 - $^{13}r = \frac{^{13}\chi}{1 ^{13}\chi}$
 - $\delta^{13}C(t) = \frac{^{13}r}{^{13}r_{\rm std}} 1$

Guy Munhoven

Isotopes in Environmental Modelling - A Primer

Useful References

- Coplen et al. (2002): Isotope-abundance variations of selected elements (IUPAC Technical Report).
- Coplen (2011): Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results.
- Hayes (2004): An Introduction to Isotopic Calculations.
- Kendall and Caldwell (1998): Fundamentals of Isotope Geochemistry. Chapter 2 of Isotope Tracers in Catchment Hydrology, Elsevier Science B. V., Amsterdam. pp. 51–86.
- Prohaska et al. (2022): Standard atomic weights of the elements 2021 (IUPAC Technical Report).
- Zeebe and Wolf-Gladrow (2001): CO₂ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, 2001.