Climate Change and Impacts Oceans and Cryosphere

Guy Munhoven

Institute of Astrophysics and Geophysics (B5c build.)
Room 0/13
eMail: Guy.Munhoven@uliege.be
Phone: 04-3669771

3rd December 2024

Guy Munhoven Climate Change and Impacts

Sea Level Acidification

Plan

- Ocean
- Cryosphere
- Recent past and future
- Paleoclimate change
- Coastal oceans
- Surface ocean acidification

Processes and feedbacks

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Historical Evolution of Sea Level

Glacial-interglacial Sea Level Change

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers
Polar Ice Sheets
Sea Ice

Sea Level: Processes and Contributions

Sea Level: Processes and Contributions

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Future Sea Level Change: Projections

Glaciers: Fluctuations Since the Little Ice Age

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers
Polar Ice Sheets
Sea Ice

Mountain Glacier Retreat: Impacts

- short and medium term
 - rise of glacial lake levels
 - risk of mountain lake overflow
 - risk of rupture of moraine (natural) and artificial dams
 - Glacial Lake Outburst Floods (GLOF) or flash floods
 - reduced drinking water resources (next 20 to 30 years)
- long term
 - perturbation of the water cycle
 - contribution to global sea level rise
 - reduced hydroelectric power potential
 - reduced river discharge

Glacial Lakes in the Himalayas: Nepal

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers
Polar Ice Sheets
Sea Ice

Glacial Lakes in the Himalayas: Bhutan

Source: http://www.grida.no

Mountain Areas: a Few Guidelines

- ca. 500 million people live in mountain areas or on high plains
- about half of the World's population relies on drinking water supplied by mountain areas
- in arid and semi-arid zones, 70 to 95% of surface waters come from mountain areas
- mountain tourism represents 15 to 20% of the World tourism
- mountain ecosystems are inherently fragile

Source: UNESCO (2002,

http://www.unesco.org/bpi/fre/unescopresse/2002/02-87f.shtml)

Guy Munhoven	Climate Change and Impacts

Sea Level Acidification Mountain Glaciers
Polar Ice Sheets
Sea Ice

Ice Sheets and Potential Sea Level Rise

	Volume	Surface Area	Equiv. Δh
	$(10^{15}{\rm m}^3)$	$(10^{12}~{\rm m}^2)$	(m)
Greenland	2.9	1.7	~ 7
East Antarctica	26.039	10.354	\sim 60
West Antarctica	3.262	1.974	\sim 6

Source: UNEP (2007), IPCC (2001)

Antarctic Ice Sheet

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Marine Ice Sheet Instability

- Ice flux at the grounding line (ligne d'ancrage or ligne d'échouage in French) of a marine ice sheet increases with the ice sheet's thickness at that place
- Sea level change may possibly perturb the position of the grounding line
 - \Rightarrow Archimedes' principle buoyant force acting onto the floating part
- If the ice sheet rests upon bedrock sloping towards the continental interior a sea level rise may trigger an ice sheet instability
- Other possible perturbation: viscosity change due to temperature change

Marine Ice Sheet Instability

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

West-Antarctic Ice-Sheet Instability

Sea Ice Decrease

- Reduced extent
 - maximum extent
 - minimum extent
- Thickness changes (volume)
- Reduced multi-annual sea ice

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Sea Ice Decrease in the Arctic

Arctic Climate Impact Assessment, 2004

Arctic Sea Ice: Evolution of the Extent

Northern Hemisphere Sea Ice Extent 11/1978 - 11/2023

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Arctic Sea Ice: Annual Extent in September

Average Monthly Arctic Sea Ice Extent September 1979 - 2023

Arctic Sea Ice: Annual Volume Change

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Arctic Sea Ice: History of Volumes From 1979 to 2023

Arctic Sea Ice: Seasonal Extents

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Arctic Sea Ice: Seasonal Extents

Northern Hemisphere Sea Ice Extent

Arctic Sea Ice: Age Distribution

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Arctic Sea Ice: Age Distribution

Source: https://nsidc.org/arcticseaicenews

Arctic Sea Ice: Age Distribution

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Antarctic Sea Ice: Evolution of the Extent

Southern Hemisphere Sea Ice Extent 11/1978 - 11/2023

Data source: NSIDC

Sea Ice: Ice-Albedo Feedback

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Sea Ice Decrease: Impact in the Arctic

Source: UNEP (2007)

Sea Level Rise: Analysis of the Contributions

Blue: 1961-2003 Brown: 1993-2003

Source: IPCC-WG1 (2007)

Guy Munhoven Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Sea Level Rise: AR5 Analysis of the Contributions

Source	1901–1990	1971–2010	1993–2010			
Observed contributions to						
Thermal expansion	-	0.8 [0.5 to 1.1]	1.1 [0.8 to 1.4]			
Glaciers except in Greenland and Antarctica ^a	0.54 [0.47 to 0.61]	0.62 [0.25 to 0.99]	0.76 [0.39 to 1.13]			
Glaciers in Greenland ^a	0.15 [0.10 to 0.19]	0.06 [0.03 to 0.09]	0.10 [0.07 to 0.13] ^b			
Greenland ice sheet	-	-	0.33 [0.25 to 0.41]			
Antarctic ice sheet	-	-	0.27 [0.16 to 0.38]			
Land water storage	-0.11 [-0.16 to -0.06]	0.12 [0.03 to 0.22]	0.38 [0.26 to 0.49]			
Total of contributions	-	-	2.8 [2.3 to 3.4]			
Observed GMSL rise	1.5 [1.3 to 1.7]	2.0 [1.7 to 2.3]	3.2 [2.8 to 3.6]			
Modelled contributions to GMSL rise						
Thermal expansion	0.37 [0.06 to 0.67]	0.96 [0.51 to 1.41]	1.49 [0.97 to 2.02]			
Glaciers except in Greenland and Antarctica	0.63 [0.37 to 0.89]	0.62 [0.41 to 0.84]	0.78 [0.43 to 1.13]			
Glaciers in Greenland	0.07 [-0.02 to 0.16]	0.10 [0.05 to 0.15]	0.14 [0.06 to 0.23]			
Total including land water storage	1.0 [0.5 to 1.4]	1.8 [1.3 to 2.3]	2.8 [2.1 to 3.5]			
Residual ^c	0.5 [0.1 to 1.0]	0.2 [-0.4 to 0.8]	0.4 [-0.4 to 1.2]			

Units: mm/yr

Global Sea-Level Budget: AR6 Analysis 1971–2018

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Heat Content in the Climate System

While we are Here: a Short Flashback ...

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Heat Accumulation in the Climate System

- $1ZJ = 10^{21} J$
- $A_{\sf Earth} = 510.1 \times 10^6 \, \rm km^2$
- ΔQ_1 : energy change per m² per yr for 1 ZJ

$$\Delta Q_1 = \frac{10^{21} \text{ J}}{A_{\mathsf{Earth}} \times 1 \text{ yr}}$$

$$= \frac{10^{21} \text{ J}}{5.101 \times 10^{14} \text{ m}^2 \ 3.15576 \times 10^7 \text{ s}}$$

$$= 0.0621213 \text{ Wm}^{-2}$$

Heat Accumulation in the Climate System

1977-2011

260 ZJ in 34 yr
$$\rightarrow$$
 7.65 ZJ/yr

$$\Delta Q = 7.65 \times \Delta Q_1 = 0.48 \, \mathrm{Wm}^{-2}$$

2000-2011

125 ZJ in 11
$$\,\text{yr} \rightarrow 11.36\,\text{ZJ/yr}$$

$$\Delta \mathit{Q} = 11.36 \times \Delta \mathit{Q}_1 = 0.71 \, \mathrm{Wm}^{-2}$$

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification Mountain Glaciers Polar Ice Sheets Sea Ice

Ocean Warming: Impacts on Coral Reefs

- Coral reefs can cope with rates of sea-level rise of up to 10 mm/yr
- Warming represents greater threat
- Bleaching if summer sea-surface temperature exceeds average maximum by 1 to 2°C one year
- In case of repeated exceeding: death
- Other threats: pollution, ocean acidification

CO₂ Emissions by Human Activity

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification

Cumulated Budget For CO₂ Emissions From 1800 to 1994

Sources end Sinks	1800 – 1994	1980 – 1999
Fossil fuels and	240 ± 20	117 ± 5
cement production		
Storage in the atmosphere	-165 ± 4	-65 ± 1
Ocean uptake	-118 ± 19	-37 ± 8
Net continent	39 ± 28	-15 ± 9
Emissions due to land-use change	100 – 180	24 ± 12
Net sequestration by terrestrial biosphere	-61 to -141	-39 ± 18

Units: 10¹⁵ g C (Sabine et al., 2004)

Surface Ocean Acidification

Source: Caldeira and Wickett (2003)

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification

Surface Ocean Acidification

Source: IMBER (2005, http://www.imber.info)

Acidification, Saturation: a Carbonate System Primer

Dissolution of CO_2 in water: release of acidity (H^+ ions):

$$\begin{array}{cccc} \mathsf{CO}_{2(\mathsf{g})} & \rightleftharpoons & \mathsf{CO}_{2(\mathsf{aq})}^* \\ \mathsf{CO}_{2(\mathsf{aq})}^* + \mathsf{H}_2\mathsf{O} & \rightleftharpoons & \mathsf{HCO}_3^- + \mathsf{H}^+ \\ & \mathsf{HCO}_3^- & \rightleftharpoons & \mathsf{CO}_3^{2-} + \mathsf{H}^+ \end{array}$$

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification

Acidification, Saturation: a Carbonate System Primer

Degree of saturation with respect to a carbonate mineral

$$\Omega_{\mathsf{carb}} = \frac{[\mathsf{Ca}^{2+}][\mathsf{CO}_3^{2+}]}{\mathcal{K}_{\mathsf{spearb}}}$$

where

- \bullet [Ca²⁺] and [CO₃²⁺] are the concentrations of Ca and CO₃²⁻
- K_{spcarb} is the solubility product of the carbonate mineral (=f(S,T,P), different for each mineral)

If $[Ca^{2+}]$ and $[CO_3^{2+}]$ such that

- $\Omega_{carb} > 1$: super-saturation, precipitation of 'carb' possible
- $\Omega_{carb} = 1$: saturation
- $\Omega_{\text{carb}} < 1$: under-saturation, dissolution of 'carb'

Acidification, Saturation: a Carbonate System Primer

Dissolution of CO_2 in water: effect on CO_3^{2-}

$$CO_{2(aq)}^* + CO_3^{2-} + H_2O \rightleftharpoons 2HCO_3^-$$

Accordingly

$$\begin{array}{ccc} [\mathsf{CO}_{2(\mathsf{aq})}^*] \nearrow & \Rightarrow & [\mathsf{CO}_3^{2-}] \searrow \\ \\ \Rightarrow & \Omega_{\mathsf{carb}} = \frac{[\mathsf{Ca}^{2+}][\mathsf{CO}_3^{2+}]}{\mathcal{K}_{\mathsf{sp\,carb}}} \searrow \end{array}$$

since $[Ca^{2+}]$ shows only little variation in general and S, T and P not affected by CO_2 dissolution

Guy Munhoven

Climate Change and Impacts

Sea Level Acidification

Surface Ocean Acidification: Impacts

- Early 2000s: ΔpH de $-0.1 \Leftrightarrow \Delta [H^+]$ of +26%
- IS92a scenario: 788 ppm of CO₂ in the atmosphere by 2100, leading to ΔpH of $-0.4 \Leftrightarrow [H^+] \times 2.6$
- Decrease of the degree of saturation with respect to common biogenic carbonate minerals in surface waters
- By 2100: under-saturation with respect to aragonite bbin the Southern Ocean and in the subarctic Pacific
- Doubling of atmospheric CO_2 (560 ppm): degree of saturation with respect to aragonite decreased to 2.1 (from 3.4 at pre-industrial time) \Rightarrow calcification rate of corals and reef-building algae reduced by 10 to 50%
- Most calcareous organisms, neritic and pelagic, touched by this unfavourable evolution

References: Royal Society (2005), Kleypas et al. (2006)

References

- IPCC Assessment Reports 2001, 2007 et 2013, WG1 et WG2.
- Caldeira and Wickett (2003) Nature 425, 365. DOI: 10.1038/425365a
- Dumas (2002) Modélisation de l'évolution de l'Antarctique depuis le dernier cycle glaciaire-interglaciaire jusqu'au futur: importance relative des différents processus physiques et rôle des données d'entrée. Doctoral thesis, Univ. J. Fourier, Grenoble.
- Kleypas et al. (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers http://www.isse.ucar.edu/florida
- Lambeck et al. (2002) Nature 419, 199-206. DOI: 10.1038/nature01089
- Boden et al. (2013). Global, Regional, and National CO₂ Emissions. CDIAC, ORNL, US DOE, Oak Ridge, U.S.A. DOI: 10.3334/CDIAC/00001_V2013
- Oppenheimer (1998) Nature 393, 325-332. DOI: 10.1038/30661
- Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. http://royalsociety.org/document.asp?id=3249.
- Sabine et al. (2004) Science 305, 367-371. DOI: 10.1126/science.1097403
- UNEP (2007) Global Outlook for Ice and Snow. Available online at http://www.unep.org/geo/geo_ice

Guy Munhoven

Climate Change and Impacts