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Introduction

Stellar evolution

e Generally slow, driven by the change of chemical composition.

e Stars ~ dynamical and thermal equilibrium structures

Stellar stability

e Complementary to stellar evolution
e Primarily concerned with stellar behaviour on shorter time scales (variable stars, helio-
and asteroseismology)

e Secular stability will not be considered in these lectures



Introduction

Hypotheses

e Gaseous stars

e Non relativistic mechanics and newtonian gravitation

Method

e Small perturbations — linearized equations
e No information on amplitudes, no interactions between modes
e Spherical symmetry : no rotation, no magnetic field, except considered as a small cor-

rection.
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Characteristic timescales

Dynamical timescale

d?r Gm 1dP

dt—2= 2 p dr
R GM 2 —
P 1P
it ~ = Toppl =~ R/c with ¢ = —1
> expl
Tea:pl pLR P

Tdyn = Texpl & T = ¢~ \GM/R



Stars p (g cm_3) Tdyn = 1//Gp
neutron star 1015 0.12 ms
white dwarf 106 3.9s

Sun 1.41 54 min

red supergiant 10— ° 39y

Period ~ 74, = @ = Period X P~ constant
PO

0.03 days < @ < 0.08 days
With 74, = 1/v/Gp, M = 4rR3p/3 and L = 4w R%c T2,

1 M 3 L
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Kelvin-Helmholtz timescale

Energy
R E=U+ 2 Q= -2U
0 TKH ~ |E|/L
M2
E ¥ Q:—/G—mdmz—g
Q U r R
Y GM2
T ~~
KH LR

For the Sun, 7577 =~ 3.1 x 107 vyears
Tdyn/TKH ~ 1.6 x 10712

Globally, transfer phenomena are much slower than dynamical phenomena.
Locally, this is not always true.

10



Nuclear timescale

In the fusion of 1 g of 1H into *He, 0.007 g is converted into energy

0.007¢2 ~ 6 x 1018 erg

If a star burns 1/10 of its hydrogen on the main sequence, its life-time may be estimated

to be
Tnuc ~ 6 X 1017M/L (CGS)

For the Sun, Tryue ~ 9.8 x 109 years

The chemical evolution of a normal star is too slow to interact with its pulsation.
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General equations

Differential equations with boundary conditions
hydrodynamics
gravitational field

conservation and transport of energy

Algebraic equations (material equations)
equation of state
opacity

nuclear energy generation
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Differential equations

Two complementary descriptions of the hydrodynamics are possible: Eulerian (generally
described in textbooks) and Lagrangian.

Eulerian description
Independent variables: 7, t.
Functions: p(7,t), U(7,t),...
7 is not a function of ¢.

07 /0t = 0 and generally ¥ %= 09/ 0t.

Lagrangian description

Same point of view as in particles mechanics.
Independent variables: @, t (e.g. @ = ().
Functions: p(d,t), 7(d,t),...

7 is a function 7(d, t).

7 = 07/t and ¥ = 97/ dt.
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Eulerian vs Lagrangian
A mathematician would have used distinct notations, pgy1er (7, t) and pragrange(@,t).

He would have written

PLa,grange(C_ia t) = PEuler(7(a,t),t)

=> it is very simple to deduce a relation between the time derivatives of the two functions.

apLagrange(aja t) _ OpEuler(d,t)
ot ot

+ v-gradp.

But a physicist uses the same notation p for both functions = problems to distinguish the

derivatives = different notations for the time derivative operator.

dp  Op
— = —+4v-gradp.
iy T Ugrade

0/0t: local time derivative
d/dt: time derivative following the motion
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Equation of continuity
Conservation of mass

op . dp :
— 4 div(pv) =0 — divi =0
ot + (p?) o dt T v
In the Lagrangian formalism, this equation can be written in an integrated form
‘a@c) : o(x)
P = const or p = po
d(a) d(xo)

Equation of motion

ov 1
Y —grad® — —grad P

- v-grad)r =
8t+( grad) ;
dv 1
or ki —grad®d — —grad P
dt I

No molecular viscosity terms.
Turbulent viscosity: no satisfactory theory of non stationnary convection = we do not
discuss this problem.
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Poisson equation
pQ dVo

AD =47Gp D(P) = -G
[PQ)

Energy conservation

1 ~
T(a—s—l—ﬁ-grads) = e€— —divF

ot 0
d 1 i
or T—S = €— —divF

dt I

where F' - 7 dS = energy flowing through d.S per unit time.

Transfer equation
We limit ourselves to the star interior and we do not discuss convective transfer = diffusion
equation

4acT3
3Kkp

F= —AgradT with A=
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Boundary conditions
At the center: regularity conditions.
At the surface: continuity with an atmospheric model.

Material equations

Equation of state

P =P, T,x), U=U(p,T,x), -

Opacity

k= kr(p,T,x)
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Nuclear energy production rate

e =e(p,T,x)

However € can be considered as a function of p, 1" and x only if the minor constituents
(2H, SHe, "Li,.. .) have reached their equilibrium abundances !
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Equilibrium configuration
T2 2
Usual definitions:  m(7r) :/O Arr<pdr, L(r) = 4nr<F.

. o dP Gm
Poisson equation integrates once, — = —5
dr r

Differential equations

ar _ Gmp
dr r2
dm 4 2
— = 4nxr
dr P
dL
= 4nr?p(e + ec) where e = —T dS/dt
r
( 3kpL
T _167rf2pacT3 (rad. zone)
- p— <
dr >—1 T dp
\ I_2 F d?“




Boundary conditions

e At the center (r = 0)
m = 0 and L = 0.

e At the surface (r = R)
- A very crude approximation: P =0 and T'=0

- A better approximation: smooth fit to a grey atmosphere with Eddington approximation

2GM
3k R2
T = T. with L =4xR%cT?

- Smooth fit to a model atmosphere.
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Small perturbation methods

Principle
X = Xg + 0X = linearized equations

No information on: amplitude, stability towards finite perturbations, metastable states,
limit cycles

a mode depends on ¢ by a factor e5¢

general solution = ) modes
stability of a mode < Rs < O
stability of a model < all Rs < O
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Eulerian and Lagrangian perturbations

But generally,

X(7t) = Xo(7t)+ X'(7t)
(@,t) = Xo(a,t)+6X(a,t)

X = X'+ 6r.grad X

ox'’ (aX)’

ot ot

ax'  [(ax

6X _ X

dt dt
85X7&58—X
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Linearized differential equations
In general, it is simpler to linearize the differential equations in the Eulerian formalism.

Continuity equation

/ —
5
97 1 div (par> —0 or p +div(psr) =0

Equation of motion

5257 o 1
— —grad®d’ + - grad P — ~grad P/
P g + 59 9
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Poisson equation
p’Q dVo
[PQ)

AP = 4Gy = O'(P) = —G/

Energy conservation

/ / . 1 .
(% L 5. grads) = ¢+ L diviE — Ldiv
ot p? p

Radiative transfer

—

F'= —XgradT — Agrad T’
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Linearized material equations
Easier to write with lagangian perturbations.

Equation of state

A lot of other useful quantities.

SU(V,S) = TéS — PSV

:>P=—(8—U) and T:(a—U)
ov/s oS/v

Other useful quantities can be expressed in terms of the 2nd order derivatives

02U 02U 02U
ov2)s’ ovas’ \as?),,
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or in terms of equivalent quantities
oln P olnT
= , I3—1= :
dlnp ) g dinp ) ¢

(8U) (8S)
= (%) =72
1/I"1 = compressibility coefficient
02U 02U (8P) (8T)
= — =
%4 S

950V _ oV oS S ov
P M2 — 1)eyoT §
5_ _ |—15_,0_|_( 3 JeopT 68
P P P Cu
5T 5p 68
o= (M3

T P Cv
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Elimination of 6.S

oP - (M3 — 1)2¢cupT| 6p n (MF3 — 1)cypT 6T
P! P p P T
Py Pr
( M3 — 1)2cypT
Py=T1 — UE )<cup
) P
(M3 — 1)eypT
Pr =
\ P
( PrP
r;—1=-1L
= < copl’

M1 =P+ (T3-1)Pr
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Normal stellar matter

p_ ReT _3RT
v 2 p
3R 5
P T v Q,U 1 3 3

Radiation and the behaviour of the [

P:@+laT4:Pg+PR pU=§@+aT4 3= P,/P
v 3 2 p
_ o _ R (3, 12(1-p)
Ppb=8 Pr=4-33 cU—M[2+ 5 ]
B 2(4 — 353)2 _ 2(4-3p)
=0t S 2T T 3o

When 3 — 0,1 and '3 — 4/3 and ¢y — .
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Pure hydrogen, p = 10> gcm_3

2 - |
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Pure hydrogen, p = 1072 gem™

3
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lonization and the behaviour of the [

Example: pure hydrogen
Particles: H, HT and e~

P = nkT where n =ng-+ ny-+ ne
p = ngmp where ng = ng -+ nq
3
pU = EnkT + nex where x = 13.6 eV
nqne 271 (2mmekT)3/2 KT
= &
no Z0 h3
Define x = n1/ngq¢, then
RpT
P = L(l + x)
M H
3 RT
U = {—(1—|—:1:)—|—:U X }
2 kT M EH
2 73/2

A= XFT = 4 (p, T)
l—=zx P

31



l( a—l—\/a2—|—4a>
aln

2

11—z
<8Inp> T 2-2
i), =22 (G F
(57), = (30 +o - ar
;_I_Pl—l-Ta:
c:;)T

— Pp+(r3_1)PT

X

i)

kT
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Pure hydrogen, p = 1072 gem™

2 I |
My
1 X
M5-1
O J_/ |

log T

4.5
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15

10

Pure hydrogen, p = 1072 gem™

c./R

log T

4.5
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Opacity

0K op orT
PR
_ olnk olnk
with Kp = and mT=< )
dlnp )+ aInT/

Nuclear energy

During the pulsation, we can no longer assume that the abundances of all nuclei species
involved in the chain of nuclear reactions assume their equilibrium values.

If 7, << 7, species ¢ will remain in equilibrium.

If 7, > 7, abundance of species ¢ unchanged.

Generally, one must solve the linearized form of the kinetic equations

— % = ep(a) —|— eT(a)—

In the literature, p. rr = €p(0) and v, pp = eT(a).

35



Example: the pp chains

lgalg 5 2gaet iy
H+'H — 3He++

T

23He —» *He+21H SHe +*He — "Be + v
"Be4+e™ — "Li+v "Be+1H -8B 4~

"Ii+1H — 2%He 8B 5 2%He+ et 4+ v
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Physical conditions close to those of the central regions of the Sun:

p=154gcm™3 T =156x10°K X =035 Y =0.63

abund (mol g=%) lifetime

2H | 1.084 x 1018 1.277 s
SHe | 2.734 x 107° | 1.021 x 10°y
"Be | 2.604 x 1012 0.2409 y
7Li | 2.600 x 10—16 12.7 min
8B | 1.590 x 1021 1.116 s

If equilibrium, e = 5.22, i.e. € x T5-22

But for a periodic oscillation, e = |ep| e~ with both |e| and 6 depending on the

period.
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|le1]

15 min 30 min

1h 2 h

Period

4 h

8 h
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0 (degrees)

= N
o1 o

[HR
o

O i |
15 min 30 min

1h 2 h 4 h 8 h
Period
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pure

mechanical
problem

adiabatic

radial

adiabatic radial

non adiabatic radial
adiabatic non radial

adiabatic nonadiabatic
adiabatic nonadiabatic
radial radial radial
oscillations oscillations
adiabatic nonadiabatic
nonradial nonradial nonradial
oscillations oscillations
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Adiabatic perturbations

5P 5
§5S=0= " =112 o §P=c25p
P p

No equation of energy, no transfer equation.

- - %
We express all variables in terms of dr

o' = —div(por)

M P
P = 5P—5_r>-gradP=L5p—5_r>-gradP
0

—I‘lPdivﬁ — o grad P

PodVg G/ div(pdr) g dVy
B Q|
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The momentum equation

A25r = —grad ®’' + o grad P 1grad P’
dt? p? p
can now be written as
d25r
" — cor,
dt?

where L is the linear operator defined by
div(pdr)q dVg
PQ)|
1
—— div(pﬁ) grad P
0

N
Lor = —Ggradp/

1
+—grad(lM1 Pdiv 5:)
P

1
+—grad(5_r> -grad P)
P

42



The coefficients of £ depend only on the two independent functions p(r) and "1 (7).

The coefficients of L are independent of ¢
= There exists simple solutions of the form g(f’)eSt (normal modes).

= The equation of motion reduces to an eigenvalue problem
L& = s°¢

Define a scalar product

(u,v) = /Vpﬂ’-?_i’d\/ = (v, u)
Then L is hermitian

(Lu,v) = (u, Lv)
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From the hermiticity of £

2

1) eigenvalues s< real = s real or pure imaginary. The eigenfunctions £ can be chosen

real.
2) The eigenfunctions £ belonging to different eigenvalues are orthogonal.
3) Define the functional

(£¢€, )
(&, ¢)

The solutions of the eigenvalue problem obey a variational principle:

A(E) =

¢ eigenfunction <> A = 0 and 52 = A(&)

Dynamical stability of a mode:
s2 > 0 = instability
s2 < 0 = stability, we often write s = —io plane waves: €

T =2(, )

i(k-F—ot)

44



Radial oscillations
Differential equations

Simplifications:
e only 1 space coordinate: r
e m is a lagrangian coordinate

o 1 0

om 47Tr2p or

e Poisson equation integrates once

oP  Gm
or 2

The general equations read

1
ZIZ + 477/)8—(7“ v) =0

45



a2 7 om
dS OL
e
dt om
7 = 64m2rtacT3 0T
o 3K om
Then, the perturbed equations,
58_X 00X
5 8m8_ om
L Amp—(r?5r) = 0,
I, om
Por _ ,Gmdr 0P8, ,05P
dt2 r2 r om r m
d o oL
T—S = Je — 0oL

46



oL

Equivalently,

_647r2r4acT3 {8T (45r n 35T B 5&) n 06T
3K om r T K om
or 1 or 0
(¢) - 2o
r r r I
oP 1 dP (6P or r3 d2 /or
() - (e 2 80
P Pdr | P r Gm dt2 \ r
<5L) _ 1dL (5L 56) 4mr?pT d§S
L)  Ldr\L ¢ L dt
o1 1dT / or 0T 6L Ok
(2) - e
T T dr r T L K

b
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Temporal dependence: § X (r,t) = 6 X (r)e5t

L) = sy

dr \r r r I

i(gs _ _ldp[sp r3s2\ or

dr \ P ~ Pdr | P Gm /) r

d (5L> 1cUL(5L 5e> Anrlc,pT 68
~(ZZ) = _= _ _ 3
dr \ L L dr \ L € L Co
d (6T 1dTI" / or 0" 0L Ok
100 - (e
dr \'T T dr r T L K

o) o) )
34 % 9
r P v at the center
L
e(é——ﬁ)—l—sT&S’:O
L € y,
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342 \
5_P_I_<4_R >5T=O

P GM ) r > simple conditions
4] 0T 6L 6

22" 4497 _ _% _ 9 at the surface
r T L K J

Improve the radiative boundary condition at the surface (Eddington approximation of the

atmosphere)
3 2 3L
T = =14 Y~
2T T3 N g2, (T T )
/OO J kK Am
T = kpdr ~ :
T P A2
ST g 0Lt (o _iny
T T L T+2/3\ kK r
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Still better: join smoothly with a perturbed atmosphere model

It is not possible to perturb directly
L = 47TR20'T€4

or L =4nr’cT* with 7=2/3

50



Integral expressions

d

)

. (r25r> = —r2—p
r P

doP 4 dP

b (4 2 50—

dr r dr

S doL
scyT— = e — ——

Co dm

Eq of motion x4xr26r and [ dr

déP 4dP
/47rr p|5r|2dr—|—/47rr 5r( y —|———5r) dr = 0.

r r dr

2
}dsz

use eq of continuity, integrate by parts

SPép 4rdP
/|5r|2dm—|—/{ '0 T
p dr

or




Express P in terms of p and S, then .5 from the energy eq

2 2
1P |d 4r dP
32/|5r|2dm—|—/ 1 ' p‘ + T dm
p P p dr

+§/U3—1ﬁ%(&—f@£)mn=o.

or

dm

sS4+ As+ B =0

—4ﬁ””wﬂ2}dnq1

d(or)
dr \ r

with A

|
—
——N—
o
N

r d

2
— =13 - }dwwl
pd

52



— /(r3 - 1)% (5e - ‘ilﬂ) dm/ I

m
= /|5r|2dm

1
A%I/Tgyn and B = —
7-alynTKH

All non adiabatic terms in B

53



Dynamical and secular modes

e From the differential equations:

e From the cubic equation:
Let A = A’/Tgyn, B = B//TgynTKH, s =5"/Tgyn and & = 7g, /TR K 1

e + A’ +aB =0

s =+ —A

= two roots of the order unity

and one of order o

54



= two roots s of order 1/74,,, and one of order 1/7x .

e Other arguments: Baker one-zone model, local analysis, numerical computations.

Dynamical /secular modes: remarks

- weakness of the arguments
- in practice, no problems, except when the model is close to dynamical instability

- Secular stability not related to asteroseismology

55



Adiabatic radial oscillations

First step in the resolution of the radial pulsation problem: adiabatic approximation.

d [/or 1 or 1 6P
() = Ak

dr r r 1 P

d (513) _ _ldp[sp r3s2\ or

dr \ P o Pdr | P Gm | r

1 0P

- _ = t =
7a-|—|_ 2 O at =0

SoP 3,2 )
— 4+ 4 — R=s T=O at r=R
P GM | r
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Dimensionless form

£ = = s = —1
M r TP

d§ 1 n

= = (34 =

dx x(g I_1>

3§—|—i=0 at xt =20
I

n+ (4 +w?)é=0 at z=1
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Homologous stellar models

/I __ /I __ /! -3
r =ar, m_ﬁma p — ﬁpa

/I =42 / _ 3/2,—1/2
P'=a *3?P, 14, =a3257 2, ..

These relations define a Lie group with 2 parameters. It is a symmetry group of the problem.
= =w=0 = 04_3/251/20

or, for the periods: 7/ /7 = Tc/lyn/Tdyn
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Sturm-Liouville problem

The system can be written as an equivalent 2nd order equation

= (reprt ) 4 {32ET - P+ o2t g =0

with the boundary conditions

dg

— =0 for =0
dr
d R3 2
FRE 4 (3r—a-Ve=0 for r=r
dr GM
It is a Sturm-Liouville problem. It has a countable infinity of solutions with
0§ <0f<...<0f<... and Jim 08 = o0
— 0

&} has exactly k nodes in the interval |0, R[ and the set of all £ is a basis in the functional
space of all the allowable displacements.
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Variational principle

with

LE = o2¢

1 d 4d§) 1 d
L= ——|IMPr’i—| ———[@BIM1 —4)P
. pr® dr( 15 pr dr[( ! YFIE

Define a scalar product

The o

2
k

(u,v) = /pr4u17 dr
are the stationary values of the functional

(u, Lu)

N(u) = (u.2)

60



In particular,

08 = mu!n A(u)

We can write

du |2 d

(u, Lu) = /{I_lP?“4 i r3|u|2£ [((B1 —4)P] }dr.

From this variational principle we can deduce:

1) If "1 is constant through the star, then the star is dynamically stable if 1 > 4 /3 and
unstable if [ < 4/3.

2) If "1 is constant through the star and > 4/3, we have

q dq
GM > GM 7
(3|_]_ — 4)@ < O'O < (3|_1 — 4) R3 /$2 dq
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Energy of a radial mode

momentum equation

d25r __ 4Gmp 0P

— 5 — ,
i dt2 r3 " or
multiply by d dr/dt
d 1, 2Gm_ 5 00Pddr
—(—v° — ) = — .
pdt(QU r3 ) or dt

transform the right-hand side
= —v-gradéP = —div(voP) + 6P divd

2
= —div(véP) — %ch% (5_/0)
0

and finally

Aotz 41202 58 s qivisp g
G50+ 5P C0? = 275 5]} = —divoP §)

62



This can be written

with
2 2
1 1 ) G 0
E=v24=c? o) o= r)
2 2 P T r
—~— Y ~-
k.  _ &a Ea
Ep
and
F =6P7

Let 6r(7r,t) = 6r(r) CcoSot, then

gK(?“, t)
5p(7“, t)

Erc(r) sin? ot
Ep(r) cos? ot
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Integrate over the whole star

then

Eg(t)

Ep(t)
E()

/4777"2,08[((7“, t) dr = Eg sin® ot

/47rr2p€p(r, t) dr = Ep cos® ot
Er(t) + Ep(t) = const

Ex =FLEp

B (D) = Bp() = ;I

2
=2 /5r2dm
2
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Behaviour of the eigenfunctions

Polytropic model, n = 3

(0,80) = (£1,81) = ...

0.5 X
Radial p1 mode (fundamental)

1.0
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—50

_]_OO | | | | | | | | |
0.0 0.5 X 1.0

Radial pp mode (1st harmonic)
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200 I I I I I I I I

100 —

0.0 0.9 X 1.0
Radial p3 mode (2nd harmonic)
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A few cases of dynamical instability

Cause: '] < T1 4

1) Initial phases of the contraction of a proto-star: dissociation of Ho, ionization of H and

He in a large fraction of the mass

2) Final phases of the evolution of massive stars, collapse of the core, initial phase of the

supernova: photodesintegration of heavy nuclei, nuclear equilibrium

ggFe — 13« ~+ 4n
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3) Very high density white dwarfs:
- relativistic degeneracy: {1 ~ 4/3

- inverse (3 decay
(Z,A)4+e < (Z—-1,A)+v

- general relativity

4 GM
[ = ——+ A
1lcr 3 + R(22

=> no stable stellar configuration with 3 X 109 g cm 3 < pec < 1014 g cm

-3

4) Maybe a situation close to instability in the envelope of S Dor variables (LBV):
B ~ 0 = 1 =~ 4/3 stengthens the effect of ionization.
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Asymptotic expression of radial frequencies

- Useful to understand which factors influence the frequencies

- Not precise enough for the computations

The principle: change of variables to transform the differential equation to an approximation

of a well-known equation.

d d d
(I_1Pr4 5) + {7“3—[(3I_1 —4)P] + an7~4} £E=0
dr dr dr
Define
T d
T = il w—rz(l_le)l/4
0 c
Then

d2
——t {o° + f()}w =0

70



First approximation

d2
d——l—a w =0 = wg < SIiNoLT
-

with o, = kn/tpfork=1,2, 3, ...
wy, has k — 1 nodes in the interval |0, 7R[.

Next approximation

e Study of the singularity at the centre

d2
F_I_{O ———|—g(7‘)}w—0

If far enough from the surface neglect g(7), define z = o7 and w = /zu(z)

d?u 1 du 9
R I 1 — — =0
dz2 +zdz+( 422)u

= u(z) = J3/2(z) and w(7) ~ sin(o7 — 5) far from the center
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e Study of the singularity at the surface

Effective polytropic index ne such that
pox (R—7r)"and P x (R — r)tetl,

TR — 7 x (R — T)1/2, px (tp — 7')2”6,
P (tp —7)2" Tl and ¢ (1 — 7).

d2
dr2

n2 - 1
[t =

If far enough from the center neglect h(7),
define z = o(7p — 7) and w = /zu(z)

d?u 1 du n2
- - - 1 — £ — 0
dz2 +zdz+< 22>u

=57 far from the surface

= u(z) = Jn.(2) and w(7) x sin(oT —oTp — 7 +
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Join both pieces of solution in 7*

You obtain the condition

. T . T MeT
_ — = — _ — k
oT oT OTR 4—|— 5 + k7
or
<l~e+”‘f+1)7T fork =12
o = — 4+ ) — fork=1,2,..
k 2 4) TR
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Vibrational stability

Take the imaginary part of

}dmZO

SPép 4rdP|é
/|5r|2dm—|-/{ p T T
p dr
P ép
\s/——pdm
2RNs s = —
/|5r|2dm

Tranform the numerator

- eq of state 4 conservation of the energy
- or cubic equation in the form 24+ A+ B/s =0

i/(rg,— 1)— (56—%) dm

2PRs s =

/|5r|2dm

74



Quasi-adiabatic approximation

s = o' — i0, nonadiabatic solution considered as a small perturbation of the adiabatic

solution = a simple expression for o’

Physical interpretation

Denominator ~ energy of the pulsation

2
E = U—/|5r|2dm
2
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Numerator ~ power of a thermodynamic cycle

P(t) = Py+ acos(¢p — ot)
p(t) = po+bcos(y —ot)
o P(t) = 6P e_‘iat (6P = agiqb)
5p(t) = 6dpe™@t  (5p = be')
b OP 5p
T = ]{Pdv ="sin(¢ — ¢) = 7S <__”>
p B p P
_T _o(oPop
T 2 P p
P 5p 1 16T L
w="CIg L%, 1 i(ae—ﬂ)dm
2 p P 2T dm
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The expression for o’ reduces to expected result

, W
o= —
2F
If amplitude o et then E o €29t and
p 1 dE
200 = — =
E dt

Interest of the integral expression for o':
- the mechanism of the excitation
- the seat of the instability

Value of the quasi-adiabatic approximation:
- very good in the interior

- very poor in the external layers

7



non

adiabatic transition . .
center adiabatic | surface

Zzone Zzone
Zzone

The transition zone may be defined such that

col' Am ~ Lt

In the nonadiabatic zone ¢, 1" Am < L7 and from the equation of energy conservation

(OL _ euT Am 58
L ~ Lt &7

shows that 0 L =~ const.
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Nuclear excitation

o1
/—56 dm
T

2
/(I_3 — 1)[€p + (M3 — 1)eg] (%) edm > 0

Contribution from the internal layers. For main sequence stars, this term is reponsible for
instability for masses above Mg ~ 90 — 120 M.

The transfer term

o1 d5L 5_Td5L
T dm T dr
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Physical interpretation: if § L decreases outwards when 0" > O, then the matter absorbs
heat at high temperature and releases it at low temperature, like an engine, and produces

positive work.
The main contribution comes from the external layers.

In a radiative zone, the main terms of the equation of transfer give

0L dp
TR w) (M3 = 1) = gl
and
T dp
rd =(M3—1)—
I,

The effect of this term is mainly determined by the sign of the coefficient

—[(4 —rp)(M3 = 1) — Ky

Generally '3 =~ 5/3, kp = 1, kp = —3.5 and the term of transfer has a stabilizing

effect.
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Conditions for excitation (kx-mechanism):
1) '3 — 1 small (partial ionization)
2) kK > 0 (opacity due to H™)

The variables of the instability strip (0 Sct, RR Lyr, § Cep, W Vir, RV Tau) owe their
instability to the k-mechanism taking place in the zone where Het < HeTt

For the Mira variables the partial ionization of hydrogen H — HT is responsible for the

instability.

In 3 Cep variables, an increase of opacity due to Fe at T~ 2 x 10° K is the cause of
the instability.
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Ratio between the amplification time 7/ = 1 /0’ and the period 7

Variable type /T

§ Sct 10% - 10°
& Cep and RR Lyr 102 -103
W Vir 10 - 20
Long period var (Mira) 1-10




The instability strip

Computations
- k-mechanism: 2nd He ionization zone -+
small contribution 1st He and H ioniz. zones

- blue edge: OK

- red edge: problems with convection

Simple explanations for the existence of the instability strip and for the phase lag of the
light.

Interpretation of J.P. Cox

) %~ (T = 1) = wp) = )7

2) In the external layers, § L /L increases ~ exponentially with 7 in adiabatic region, but

remains constant in non adiabatic region
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We suppose 6T /T > 0

Reégion
d'ionisation

He"

He'* Het—— He'"+e

Y

e AT~2x10° K

-— TEMPERATURE
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The phase lag

3.5

4.5

6500 K

6000 K

5000 K

R/ Rmin

V; {km/s)

1.15

1.10

1.05

(a)

(b)

(d)

The pulsation of § Sct
(a) light curve,

(b) temperature,
(c) radius,
(d)

d) radial velocity
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Adiabatic theory: max of dp, 61", L and min of dr simultaneous.

True below the H ionization zone.

The luminosity acquires its phase lag in the H ionization zone (in the non adiabatic region
). Thanks to its high ¢y, the ionization front can absorb energy and moves through the
stellar material. Its position (and the outgoing luminosity) lags behind the inner luminosity

in the same way as the charge of a condenser lags behind the difference of potential at its
terminals.

This mechanism cannot exist in stars with

T. > 10% K. This is in agreement with observations: no phase lag in 3 Cep variables.
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Secular stability

secular modes

associated with s in energy equation

$2 term in motion equation now negligible

S+ As+B=0  with

2 2
Azl/Tdyn B%l/TdynTHK

$3 term negligible
5p dSL
/(r3 _ 1) (5e _ —) dm
¢ — b _ P dm
A d (6r\|° rd o2
/{027“2 - (_r)‘ — i—[(3I_1 — 4)P] o }dm
dr \'r pdr r
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Approximation: eigenfunctions replaced by a perturbation describing a homologous trans-

formation.
) 0 oP o 4 —3P,
—T:—]_, —p:3, — =4, — = 3p
T P P T Pr
Then
0L or 0" Ok 4 — 3P
L T + T K fo F Pr ( wT)
and
(Fr3—1)L 4 — 3P
S~ — {3kp+ 3ep + 4 + (kp +er—4)}
(M-l " 7" Pr
Gmd
where 2 = —/ e is the gravitational potential energy of the star.
r
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Consequences:

1) S X 1/TKH
2) We suppose dynamical stability, (1 > 4 /3, then the secular stability criterion reads

4 — 3P,
T

3Ky + 3¢, + 4 + (kp 4+ ep —4) >0

Perfect gas

Secular stability criterion

3kp+ K+ 3€p+ e >0
For a main sequence star
K,p%]., K/T%—3,5, Gp%].

For pp chains e =~ 6 for T' =~ 5 X 10% K and for the carbon cycle er ~ 13 for
T ~ 5 x 107K. Main sequence stars are secularly stable.
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Consider an infinitesimal homologous transformation

0 0
T—1, o3 g
T P P T

Then

S  SL
—e—f=3mp+mT+3ep+eT>o
€

The increase in nuclear energy production is not entirely compensated by the variation of
the luminosity. It results in an increase in temperature and pressure able to oppose a further

contraction.

Degenerate matter

P,~5/3, Pr=0
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and the secular stability criterion reads

er+rp—4<0
In degenerate matter, energy transport is provided by conduction and
—2T2

Ko P et Kp R 2

The presence of nuclear fuel in degenerate matter leads to instability.

Consider a perturbation described by

)

T P P T
Then

de OL

CoZ = —4>0
i er + K
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The increase in nuclear energy production is not entirely compensated by the variation
of luminosity. It results in a further increase in temperature. The pressure is almost
independent of temperature and is unable to oppose the resulting thermal runaway. This

runaway is only stopped when the temperature is high enough so that the matter is no
longer degenerate.
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Application to the stellar evolution

1) Linear series: local unicity of stellar models, bifurcation diagram, critical values, and

s = 0.

L 4

L J
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Stars with a hydrogen shell source: the Schonberg-Chandrasekhar limit

lg R¢ lg R,

M=3 M=2
—
>
// K
I I I I
c1 ¢z dc e Ac2 dc
Ig R, Ig R,
M=1.6 M=1
I
T
dc1 9c2 de dc

4sc = qe2 = 0.37 (L)

C
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2) Cepheids
5Mo < M < 10Mg

I I I | | | | | | | T
5 I
41—
3 o
[=]
=
-l
§’ 21— cepheids
1 [ —
0 [ —
® Core He ignition
®* Core C ignition
0.8
- B
T TR TR SR A TR S N
4.5 4.0 35

log T,
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3) Helium flash

4) Nova phenomenon

Cool star

o

Mass stream

Hot (bright) spot

White dwarf

Accretion disk
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Non radial oscillations

Spherical coordinates
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Some differential operators in spherical coordinates

1
Ao = — 9 (rza—a)
r2 Or or
1 0 oo 1 02
Sin 06—
r2sin 6 56 ( ae) * r2sin? 0 O¢2
_ 10 (Tza_a) 1.0
r2 Or or r2
where
2
LQZ—LQ(S”’]QQ)_ -12 0
sin 6 06 00 sin‘ @ 02
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Perturbation equations

5r = 61 + 13808 + 164 SiN0E,

We suppose we have already separated the factor et

Equation of continuity

p’—l—5r%—l—p{ (7“257“)—|———(S|n959)—|—85¢} 0
r

r2 Or no 1000

Equations of motion

d’ "dP 1 0P/
s26r = —8 —|‘p — =

or p2dr p Or

/ /
2050 — 18¢_18P
r 00  pr 00

1 o 1 OF
rsingd 0¢  prsinf O¢

s°rsinfdp =
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Poisson equation

1 [ 500\ 1
— (7"2 ) — SL?®" = 4nGy/

r2 or 7“2
Energy equation
ds p'ld
/ — 2
(S o) = T2y
1,18, o, 1 OF}
_ Tl T (reF sin 0 F, :
P{TQE?T(T r) 7 Sin 989( 2 rSind ¢ }
Transport equations JT 97
F; == —)\/— —_ >\—7
dr or
F! = _é&_T’
0 r 00’
o A 8T’.
¢ rsing 9¢

A difficult problem. We turn directly to adiabatic approximation.
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Separation of the coordinates

Yo (0, 8) = agm P (o5 0)e™®  and L2V (0, ¢) = L( + 1)Yyn (0, 6)
Eq. of motion = 06, 0¢ = eq. of continuity

o —|—5r——|— —8—(7“257“) + —L2X =0 withy=®"+P'/p

o0 14
or(r,0,0) = > > T (r)Yen(0,90),  p'(r,0,¢0) =...

I=0m=-—¢
( do , p d pl(£+ 1)
Pom + 6Tem—— + <5 —(126rp) + 55X = O
dr r dr/ , re
< 825r£m=_d¢€m+p€m£_ldpﬁm

P P
1 d dd’ /(041
= 2 P22 m ) e+ )CD/ = 47 Gp)
2d dr

\
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e Boundary conditions at the center

Regularity of the solution

= 2 boundary conditions
= or ocrt~1 P and &' « rt

e Boundary conditions at the surface
1)5P=O:>5Pgm20

2) Continuity of ®’ and grad &’

For simplicity, we omit the £, m indices. Let ®’ be the exterior solution.

1d [ »dd 00+ 1)’
—— | —] - =0,
r2dr dr r2
lts regular solution is
o =
e = LIF1
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We impose

5(1) — 5CD€
dd dd
o—— = §—=
dr dr
or
dd dd
'+ fr— = L+ sr—=
r X dr
dd’ d?d  dd! d? P,
— 449 — SR
dr T 7aalfr2 dr Tor dr2
For the equilibrium configuration we have
Cb — cbe
db  dPe
dr cér
d2d d? o
= 4 4nGp

dr? dr?
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The continuity conditions then give

o = =
= 1
dd’ {4+ 1A
= T2 T AnGpor
And the elimination of A gives the required condition

dd’ (41
— + + ® + 4nGpdr =0.
dr r

Degeneracy

Ském — Skbm/
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Cowling approximation

&’ = 0 = 2nd order system.
Define v = r26r P1/T1, w = P'/PY/T1 and

s = —10, then
dv L% r2P2/r1
— = (5 -1 w
dr o2 pc2
dw  _ 2 2 P
ar = T g
with
12— 00+ 1)c?
¢ r2
dln 1 dinP
n? = —Ag where A = P _

dr 1 dr
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e Don't use for computations

e Useful for analytical discussion:
- link with plane waves (Lamb frequency, Brunt-Vaisila frequency)

- classification of the modes
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Properties of non radial modes

Components of the displacement

5r = 6ré& +rd0e +rsingépe,
1 [0Ox 1 Oy
5 _ _
rert ro? (8«969 tGing ¢ %)
[a(r)&+ b(r)i e~

with
P/
x = &' +—
I,
€ = Yfm(97¢)€T
Yom 1 Yy

90 T sing ap °
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It is easy to show that

1

JAERE
| I2ds2

L+ 1)
Then
/|ﬁ|2dm = /pr2 [az + ¢(¢ + 1)62} dr
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f, p and g modes

g, & 838, 4 f Py Pg  Ps

NV

N\

N4

Fully convective model
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Fully radiative model
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SN ///// 77

Model with radiative and convective zones



Nature of the modes

p-modes: compressibility, disappear if [ 1 = oo
sound waves
g-modes: buoyancy, disappear if A = 0
g+: internal gravity waves
evanescent in convective zones
g~ : convection
evanescent in radiative zones
f-mode: 7

surface gravity wave
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Eigenfunctions of the standard model (67/R = at—1¢)

_25 -

—00

0.0
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20

1.0
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Energy of a non radial mode

E = Ex(t) + Ep(t) = Ex sin ot + Ep cos? ot

Eg(t) Ex.(t) + Egp(t)
Ep(t) = E(t) + Eg(t) + Ep(t)

B (t) = [ SpuRav
Epp(t) = /%pv%dv
Ea(t) = 2]; /:de
Eo(t) = / %p’CD/dV
Eg(t) = /%pnz&rzdv
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Polytrope n = 3
1 =5/3

0.5

0

Fraction of the kinetic energy in the radial component

fq

1

10

w2

1
100




1
+++++p10
fr o ' ,‘5; P
ot P2
f-l-
Physical model, 1 M
0o— 1 . +
pe/p = 108:3 osp 9 +
density discontinuity at 9, P4
x = 0.0615, ¢ = 0.03 O
pP1—P2 — (.32 gs+
p1+p2 . 98,
Gio+ +
+ 96
+ D7
99
1 1 1
0™ 0 wZ 100

Fraction of the kinetic energy in the radial component
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Physical model, 1 M
pe/p = 168.3

density discontinuity at

x = 0.0615, ¢ = 0.03

P1—P2 —
piFps — 032

0.5

— + -+ +

So s g;
gs*

P,

e N W W W N W W N
L

Fraction of the kinetic energy in the core

078y 69: 8381 ,f P P PPs P

1 10 w? 100
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Physical model, 1 M
pe/p = 168.3

density discontinuity at

x = 0.0615, ¢ = 0.03

pP1—pP2 __
p1tp2 0.32

10

o o o e " — o o v —
3 3 ¥ F )

F:_'—_.—_—;.—_

-
_i
+
1
|
r
.

'
w
I

-——umy,

-10 1 1 1 [ 1 1

0 0.5

Radial and horizontal components of the displacement

for | = 2 g5 mode
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10

Physical model, 1 M
pe/p = 168.3
density discontinuity at

x = 0.0615, ¢ = 0.03

pP1—pP2 __ L
p1tp2 0.32 >

-10 1 ] ] 1 | I L 1

Radial and horizontal components of the displacement

for | = 2 gg mode
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Physical model, 1 M
pe/p = 168.3

density discontinuity at

x = 0.0615, ¢ = 0.03

pP1—pP2 __
p1tp2 0.32

10

_]0 | 1 1 ] | 1 i

Radial and horizontal components of the displacement

for | = 2 pg mode
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Physical model, 1 M
pe/p = 168.3

density discontinuity at

x = 0.0615, ¢ = 0.03

pP1—pP2 __
p1tp2 0.32

10

-ty
b

T e e o

~—

-10 '
0 0.5

1

Radial and horizontal components of the displacement

for | = 2 pg mode
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Spheroidal and toroidal modes

The modes studied up to now do not form a basis in the space of all possible perturbations

of a star.

A general vector field may be written in terms of three independant scalar fields

o7 — a(Peér 4+ grad B(7) + rot[y(7)é]

spheroidal toroidal

The momentum equation can be written as

1 /
s26r = —grad ' — = grad P’—|—%gradP.
p p

Using the adiabatic relation and the continuity equation we get
825 = —gradx + CQdeiV§ :
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So that o7 is of the form

5 = a(7r)er 4+ grad B(7)

In our analysis, we have lost all the zero-frequency modes.

1) Three spheroidal modes with £ = 1,
m = —1,0, 1 describing solid translations of the star.

BY, 1 9y,
57 = a{y, tm m
= alYmér + 570 T G o 0

}
¢ =1 f-modes ?

2) Toroidal modes: horizontal and divergenceless

1 9Y, Y,
57"—0,(7"){ 8 Em—» 8 m -

€} -
They acquire non-zero frequencies in presence of rotation and are of the same nature as

sing 9 ¢ o8 ¢
Rossby waves.
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Asymptotic expression for the frequencies
Difficulty: even with Cowling approximation, moving singularities.

p-modes

(e xe)-

o) ~
k¢ /Rd’l“
0O c
——
Ok+140 — Oky =~ const
Okt ~ Ok—1/0+42
Opo+1 ~ (Opo+ oky10)/2
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g-modes

¢
\/€(€—|— 1) N (k + 5 + const) T
okl /Mdr
r
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Effect of a slow rotation on the frequencies

small rotation around the z-axis: €2(r, 0)
- €2 taken into account in the Coriolis force
- €22 neglected in the centrifugal force

2
(%+6-grad) ﬁzﬁﬁ

with v = Q2r sin 9€¢.

= - )y . .
Looking for solutions 67 = et and neglecting terms in 22,

o2+ 20 MEF+LE=0
with M& = (U - grad)E.

M is hermitian and linear in £2. The problem can be solved by a perturbation method
presented in elementary textbooks of quantum mechanics (degenerate case !)
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We write 0 = g + 01 and & = &g + &1 and we obtain easily

_ (M¢&p,&0)
(£0,€0)

The explicit expression of o1 is rather tedious to calculate. It is given by an integral

expression involving €2 and the eigenfunctions of the problem without rotation.
rotational splitting < degeneracy entirely lifted

If 2 = Q(r), the expression simplifies to

o1 = m/Kkg(r)Q(r) dr
with
or?[a® + (¢ + 1)b2 — 2ab — b?]
/[)7“2[612 + (6 + 1)b?] dr

Kip(r) =

134



For a uniform rotation, we have the usual expression

0
Okom = O + mPBg§2

with

B = /K/ce(r)dr

Toroidal modes

In presence of rotation, toroidal modes acquire non zero frequencies. Their dynamics
is governed by the Coriolis force as Rossby waves or planetary waves. They have low

frequencies. For uniform rotation

B 2mS2
(44 1)

o = m¢S2
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Non-linear radial oscillations

Why non-linear oscillations ?

- In § Cep and RR Lyr variables, 67 /r ~ 5-10%
and §P/P = (4 + w?)ér/r

- shock wave in atmosphere of W Vir variables

- non sinusoidal light curves

- finite amplitudes

Lagrangian formalism

287”

2
rc—— = par
P oro POT0
8<D_Gm
or 12
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d?r Gm r2 OP
dt? r2 ,00?“8 orp

dsS 1 oL
T— —=¢€— 5
dt 4 porg Oro

16mrtacT3 8T

3/4;,007“8 org

L =

Adiabatic approximation
dP  odp
ar - dt
If ["1 is constant,
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d2r Gm r2 9 7“8 B
dt2 r2 POTH org r20r /0rg

e Separation of variables

1) it = 4/3
2) homogeneous model (pg independent of rq)

e Series developments

r=ro(l4+¢) et = Z fi(ro)aq;(t),
1=0

1) g;(t) = harmonic functions (Fourier development, Eddington)
2) fi(rg) = eigenfunctions
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Numerical integrations

In the sixties, equations for radial pulsations with initial conditions were solved by hydro-
dynamic lagrangian codes with ~ 50 shells and ~ 200 time steps

- success for Cepeids and RR Lyr

- limit cycle

- little change in periods

- rather good light curves

But
- numerical tricks to ensure the stability of the code or to follow shock waves

- depending on the type of variable, huge computation time may be necessary for the
damping of stable modes and to reach full amplitude for the unstable ones

Alternative procedure
- direct search for a limit cycle, but delicate to work out
139



Regular and chaotic pulsations

Mira

séquence
principale

10 |

1
BO AO FO GO KO Mo
Type spectral

A few classes of variable stars in the HR diagram
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Light curve of W Vir
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U Mon

R Sct

| I | |
0 100 200 300 400

Days

Light curves of two RV Tauri variables: U Mon (92.3 d) and R Sct (140.2 d)
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AF Cyg

6l
gl
3 L, Pup
Vo4l
5|
Z UMa
g |-
9W
10|~
| | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000
Days

Light curves of three SRb variables: AF Cyg (94.1 d), Lo Pup (140.8 d) et Z UMa (196 d)
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Period-luminosity relation of W Vir, RV Tau and semi-regular variables of globular

clusters (periods in days) For RV Tau variables, the half-periods have been used
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Stability of pop Il envelope models of decreasing T from a to f.

40
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