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Introduction

Stellar evolution

• Generally slow, driven by the change of chemical composition.

• Stars ≈ dynamical and thermal equilibrium structures

Stellar stability

• Complementary to stellar evolution

• Primarily concerned with stellar behaviour on shorter time scales (variable stars, helio-

and asteroseismology)

• Secular stability will not be considered in these lectures
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Introduction

Hypotheses

• Gaseous stars

• Non relativistic mechanics and newtonian gravitation

Method

• Small perturbations→ linearized equations

• No information on amplitudes, no interactions between modes

• Spherical symmetry : no rotation, no magnetic field, except considered as a small cor-

rection.
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A few classes of variable stars in the HR diagram
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Characteristic timescales

Dynamical timescale

d2r

dt2
= −Gm

r2
− 1

ρ

dP

dr

R

τ2ff
≈ GM

R2
⇒ τff ≈

√

R3/GM ≈ 1/
√

Gρ

R

τ2expl
≈ P

ρR
⇒ τexpl ≈ R/c with c =

√

Γ1P

ρ

τdyn ≈ τexpl ≈ τff ⇒ c ≈
√

GM/R
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Stars ρ (g cm−3) τdyn = 1/
√
Gρ

neutron star 1015 0.12 ms

white dwarf 106 3.9 s
Sun 1.41 54 min

red supergiant 10−9 3.9 y

Period ≈ τdyn ⇒ Q = Period×
√

ρ

ρ⊙
≈ constant

0.03 days ≤ Q ≤ 0.08 days

With τdyn = 1/
√
Gρ, M = 4πR3ρ/3 and L = 4πR2σT4

e ,

log τdyn = 14.8− 1

2
log

M

M⊙
+

3

4
log

L

L⊙
− 3 logTe
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τdyn for 1 M⊙
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Kelvin-Helmholtz timescale

6

?

6

Energy

E

0

Ω U

E = U + Ω Ω = −2U

τKH ≈ |E|/L

Ω = −
∫
Gm

r
dm ≈ −GM

2

R

τKH ≈
GM2

LR

For the Sun, τKH ≈ 3.1× 107 years

τdyn/τKH ≈ 1.6× 10−12

Globally, transfer phenomena are much slower than dynamical phenomena.

Locally, this is not always true.
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Nuclear timescale

In the fusion of 1 g of 1H into 4He, 0.007 g is converted into energy

0.007c2 ≈ 6× 1018 erg

If a star burns 1/10 of its hydrogen on the main sequence, its life-time may be estimated

to be

τnuc ≈ 6× 1017M/L (CGS)

For the Sun, τnuc ≈ 9.8× 109 years

τKH/τnuc ≈ 3.2× 10−3

The chemical evolution of a normal star is too slow to interact with its pulsation.
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General equations

Differential equations with boundary conditions

hydrodynamics

gravitational field

conservation and transport of energy

Algebraic equations (material equations)

equation of state

opacity

nuclear energy generation
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Differential equations

Two complementary descriptions of the hydrodynamics are possible: Eulerian (generally

described in textbooks) and Lagrangian.

Eulerian description

Independent variables: ~r, t .

Functions: ρ(~r, t), ~v(~r, t),. . .

~r is not a function of t.

∂~r/∂t = 0 and generally ~γ 6= ∂~v/∂t.

Lagrangian description

Same point of view as in particles mechanics.

Independent variables: ~a, t (e.g. ~a = ~r0).

Functions: ρ(~a, t), ~r(~a, t),. . .

~r is a function ~r(~a, t).

~v = ∂~r/∂t and ~γ = ∂~v/∂t.

13



Eulerian vs Lagrangian

A mathematician would have used distinct notations, ρEuler(~r, t) and ρLagrange(~a, t).

He would have written

ρLagrange(~a, t) = ρEuler(~r(~a, t), t)

⇒ it is very simple to deduce a relation between the time derivatives of the two functions.

∂ρLagrange(~a, t)

∂t
=
∂ρEuler(~a, t)

∂t
+ ~v · grad ρ .

But a physicist uses the same notation ρ for both functions⇒ problems to distinguish the

derivatives⇒ different notations for the time derivative operator.

dρ

dt
=
∂ρ

∂t
+ ~v · grad ρ .

∂/∂t: local time derivative

d/dt: time derivative following the motion

14



Equation of continuity

Conservation of mass
∂ρ

∂t
+ div (ρ~v) = 0 or

dρ

dt
+ ρdiv~v = 0

In the Lagrangian formalism, this equation can be written in an integrated form

ρ

∣
∣
∣
∣
∣

∂(x)

∂(a)

∣
∣
∣
∣
∣
= const or ρ

∣
∣
∣
∣
∣

∂(x)

∂(x0)

∣
∣
∣
∣
∣
= ρ0

Equation of motion

∂~v

∂t
+ (~v · grad)~v = −gradΦ− 1

ρ
gradP

or
d~v

dt
= −gradΦ− 1

ρ
gradP

No molecular viscosity terms.
Turbulent viscosity: no satisfactory theory of non stationnary convection ⇒ we do not
discuss this problem.
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Poisson equation

∆Φ = 4πGρ Φ(P) = −G
∫ ρQ dVQ

|PQ|

Energy conservation

T

(
∂S

∂t
+ ~v · gradS

)

= ǫ− 1

ρ
div ~F

or T
dS

dt
= ǫ− 1

ρ
div ~F

where ~F · ~n dS = energy flowing through dS per unit time.

Transfer equation

We limit ourselves to the star interior and we do not discuss convective transfer⇒ diffusion
equation

~F = −λgradT with λ =
4acT3

3κρ
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Boundary conditions

At the center: regularity conditions.

At the surface: continuity with an atmospheric model.

Material equations

Equation of state

P = P(ρ, T, χ), U = U(ρ, T, χ), . . .

Opacity

κ = κ(ρ, T, χ)
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Nuclear energy production rate

ǫ = ǫ(ρ, T, χ)

�
�

�
�

�

@
@

@
@

@

!
However ǫ can be considered as a function of ρ, T and χ only if the minor constituents

(2H, 3He, 7Li,. . . ) have reached their equilibrium abundances !
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Equilibrium configuration

Usual definitions: m(r) =

∫ r

0
4πr2ρ dr, L(r) = 4πr2F .

Poisson equation integrates once,
dΦ

dr
=
Gm

r2
.

Differential equations

dP

dr
= −Gmρ

r2
dm

dr
= 4πr2ρ

dL

dr
= 4πr2ρ(ǫ+ ǫG) where ǫG = −T dS/dt

dT

dr
=







− 3κρL
16πr2acT3 (rad. zone)

Γ2−1
Γ2

T
P
dp
dr
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Boundary conditions

• At the center (r = 0)

m = 0 and L = 0.

• At the surface (r = R)

- A very crude approximation: P = 0 and T = 0

- A better approximation: smooth fit to a grey atmosphere with Eddington approximation

P =
2GM

3κ̄R2

T = Te with L = 4πR2σT4
e

- Smooth fit to a model atmosphere.
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Small perturbation methods

Principle

X = X0 + δX ⇒ linearized equations

No information on: amplitude, stability towards finite perturbations, metastable states,

limit cycles

a mode depends on t by a factor est

general solution =
∑

modes

stability of a mode⇔ ℜs < 0

stability of a model⇔ all ℜs < 0
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Eulerian and Lagrangian perturbations

X(~r, t) = X0(~r, t) +X ′(~r, t)
X(~a, t) = X0(~a, t) + δX(~a, t)

δX = X ′+
−→
δr · gradX

∂X ′

∂t
=

(
∂X

∂t

)′

∂X ′

∂xi
=

(

∂X

∂xi

)′

δX

dt
= δ

dX

dt

But generally,
∂δX

∂xi
6= δ

∂X

∂xi
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Linearized differential equations

In general, it is simpler to linearize the differential equations in the Eulerian formalism.

Continuity equation

∂ρ′

∂t
+ div



ρ
∂
−→
δr

∂t



 = 0 or ρ′+ div(ρ
−→
δr) = 0

Equation of motion

∂2−→δr
∂t2

= −gradΦ′+
ρ′

ρ2
gradP − 1

ρ
gradP ′
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Poisson equation

∆Φ′ = 4πGρ′⇒ Φ′(P) = −G
∫ ρ′Q dVQ
|PQ|

Energy conservation

T

(

∂S′

∂t
+ ~v · gradS

)

= ǫ′+
ρ′

ρ2
div ~F − 1

ρ
div ~F ′

Radiative transfer

~F ′ = −λ′ gradT − λgradT ′
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Linearized material equations

Easier to write with lagangian perturbations.

Equation of state

δP
P = Pρ

δρ
ρ + PT

δT
T

with Pρ =
(
∂ lnP
∂ ln ρ

)

T
and PT =

(
∂ lnP
∂ lnT

)

ρ

A lot of other useful quantities.

δU(V, S) = TδS − PδV
⇒ P = −

(
∂U

∂V

)

S
and T =

(
∂U

∂S

)

V

Other useful quantities can be expressed in terms of the 2nd order derivatives
(

∂2U

∂V 2

)

S

,
∂2U

∂V ∂S
,

(

∂2U

∂S2

)

V
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or in terms of equivalent quantities

Γ1 =

(

∂ lnP

∂ ln ρ

)

S

, Γ3 − 1 =

(

∂ lnT

∂ ln ρ

)

S

,

cv =

(
∂U

∂T

)

ρ
= T

(
∂S

∂T

)

ρ

1/Γ1 = compressibility coefficient

∂2U

∂S ∂V
=

∂2U

∂V ∂S
⇒ −

(
∂P

∂S

)

V
=

(
∂T

∂V

)

S

δP

P
= Γ1

δρ

ρ
+

(Γ3 − 1)cvρT

P

δS

cv
δT

T
= (Γ3 − 1)

δρ

ρ
+
δS

cv
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Elimination of δS

δP

P
=

[

Γ1 −
(Γ3 − 1)2cvρT

P

]

︸ ︷︷ ︸

Pρ

δρ

ρ
+

(Γ3 − 1)cvρT

P︸ ︷︷ ︸

PT

δT

T







Pρ = Γ1 −
(Γ3 − 1)2cvρT

P

PT =
(Γ3 − 1)cvρT

P

⇒







Γ3 − 1 =
PTP

cvρT

Γ1 = Pρ + (Γ3 − 1)PT
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Normal stellar matter

P =
RρT
µ

U =
3

2

RT
µ

Pρ = PT = 1 cv =
3

2

R
µ

Γ1 = Γ3 =
5

3

Radiation and the behaviour of the Γi

P =
RρT
µ

+
1

3
aT4 = Pg + PR ρU =

3

2

RρT
µ

+ aT4 β = Pg/P

Pρ = β PT = 4− 3β cv =
R
µ

[

3

2
+

12(1− β)
β

]

Γ1 = β +
2(4− 3β)2

3(8− 7β)
Γ3 − 1 =

2(4− 3β)

3(8− 7β)

When β → 0, Γ1 and Γ3 → 4/3 and cV →∞.
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Pure hydrogen, ρ = 10−5 g cm−3

 0

 1

 2

 5  6  7

log T

β

Γ1

Γ3-1
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Pure hydrogen, ρ = 10−5 g cm−3

 0

 5

10

 5  6  7

log T

cv/R

30



Ionization and the behaviour of the Γi

Example: pure hydrogen
Particles: H, H+ and e−

P = nkT where n = n0 + n1 + ne
ρ = natmH where nat = n0 + n1

ρU =
3

2
nkT + neχ where χ = 13.6 eV

n1ne

n0
=

2Z1

Z0

(2πmekT)3/2

h3
e−χ/kT

Define x = n1/nat, then

P =
RρT
µH

(1 + x)

U =

{
3

2
(1 + x) + x

χ

kT

}RT
µH

x2

1− x = A
T3/2

ρ
e−χ/kT = a(ρ, T)
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x =
1

2

(

−a+

√

a2 + 4a

)

xρ =

(

∂ lnx

∂ ln ρ

)

T

= −1− x
2− x

xT =

(
∂ lnx

∂ lnT

)

ρ
=

1− x
2− x

(
3

2
+

χ

kT

)

cv =

(
∂U

∂T

)

ρ
=

{
3

2
(1 + x) + xxT

(
3

2
+

χ

kT

)} R
µH

Pρ = 1 +
xxρ

1 + x

PT = 1 +
xxT
1 + x

Γ3 − 1 =
PTP

cvρT
Γ1 = Pρ + (Γ3 − 1)PT
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Pure hydrogen, ρ = 10−5 g cm−3

 0

 1

 2

 4  4.5  5

log T

x

Γ1

Γ3-1
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Pure hydrogen, ρ = 10−5 g cm−3

 0

 5

10

15

20

 4  4.5  5

log T

cv/R
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Opacity

δκ

κ
= κρ

δρ

ρ
+ κT

δT

T

with κρ =

(

∂ lnκ

∂ ln ρ

)

T

and κT =

(
∂ lnκ

∂ lnT

)

ρ

Nuclear energy

During the pulsation, we can no longer assume that the abundances of all nuclei species
involved in the chain of nuclear reactions assume their equilibrium values.
If τi ≪ τ , species i will remain in equilibrium.
If τi ≫ τ , abundance of species i unchanged.
Generally, one must solve the linearized form of the kinetic equations

=⇒ δǫ

ǫ
= ǫρ(σ)

δρ

ρ
+ ǫT (σ)

δT

T

In the literature, µeff = ǫρ(σ) and νeff = ǫT (σ).
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Example: the pp chains

1H + 1H → 2H + e+ + ν
2H + 1H → 3He+ γ

@
@

@
@

@R

�
�

�
�

�	

2 3He→ 4He+ 2 1H 3He+ 4He→ 7Be+ γ

?

�����������

7Be+ e− → 7Li+ ν
7Li+ 1H → 2 4He

7Be+ 1H → 8B + γ
8B → 2 4He+ e+ + ν
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Physical conditions close to those of the central regions of the Sun:

ρ = 154 gcm−3 T = 15.6× 106 K X = 0.35 Y = 0.63

abund (mol g−1) lifetime
2H 1.084× 10−18 1.277 s
3He 2.734× 10−6 1.021× 105 y
7Be 2.604× 10−12 0.2409 y
7Li 2.600× 10−16 12.7 min
8B 1.590× 10−21 1.116 s

If equilibrium, ǫT = 5.22, i.e. ǫ ∝ T5.22.

But for a periodic oscillation, ǫT = |ǫT | e−iθ with both |ǫT | and θ depending on the

period.
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radial
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- adiabatic
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- adiabatic radial

- non adiabatic radial

- adiabatic non radial
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Adiabatic perturbations

δS = 0⇒ δP

P
= Γ1

δρ

ρ
or δP = c2δρ

No equation of energy, no transfer equation.

We express all variables in terms of
−→
δr

ρ′ = −div(ρ
−→
δr)

P ′ = δP −−→δr · gradP =
Γ1P

ρ
δρ−−→δr · gradP

= −Γ1P div
−→
δr −−→δr · gradP

Φ′(P) = −G
∫ ρ′Q dVQ
|PQ|

= G
∫ div(ρ

−→
δr)Q dVQ

|PQ|
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The momentum equation

d2
−→
δr

dt2
= −gradΦ′+

ρ′

ρ2
gradP − 1

ρ
gradP ′

can now be written as

d2
−→
δr

dt2
= L−→δr,

where L is the linear operator defined by

L−→δr = −GgradP

∫ div(ρ
−→
δr)Q dVQ

|PQ|
− 1

ρ2
div(ρ

−→
δr) gradP

+
1

ρ
grad(Γ1P div

−→
δr)

+
1

ρ
grad(

−→
δr · gradP)
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The coefficients of L depend only on the two independent functions ρ(r) and Γ1(r).

The coefficients of L are independent of t

⇒ There exists simple solutions of the form ~ξ(~r)est (normal modes).

⇒ The equation of motion reduces to an eigenvalue problem

Lξ = s2ξ

Define a scalar product

(u, v) =

∫

V
ρ~u · ~̄v dV = (v, u)

Then L is hermitian

(Lu, v) = (u,Lv)
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From the hermiticity of L
1) eigenvalues s2 real ⇒ s real or pure imaginary. The eigenfunctions ξ can be chosen

real.

2) The eigenfunctions ξ belonging to different eigenvalues are orthogonal.

3) Define the functional

Λ(ξ) =
(Lξ, ξ)
(ξ, ξ)

The solutions of the eigenvalue problem obey a variational principle:

ξ eigenfunction⇔ δΛ = 0 and s2 = Λ(ξ)

Dynamical stability of a mode:

s2 > 0⇒ instability

s2 < 0⇒ stability, we often write s = −iσ plane waves: ∝ ei(~k·~r−σt)
T̄ = σ2

4 (ξ, ξ)
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Radial oscillations

Differential equations

Simplifications:

• only 1 space coordinate: r

• m is a lagrangian coordinate

∂

∂m
=

1

4πr2ρ

∂

∂r

• Poisson equation integrates once

∂Φ

∂r
=
Gm

r2

The general equations read

1

ρ

dρ

dt
+ 4πρ

∂

∂m
(r2v) = 0
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dv

dt
= −Gm

r2
− 4πr2

∂P

∂m

T
dS

dt
= ǫ− ∂L

∂m

L = −64π2r4acT3

3κ

∂T

∂m

Then, the perturbed equations,

δ
∂X

∂m
=
∂ δX

∂m
δρ

ρ
+ 4πρ

∂

∂m
(r2δr) = 0,

d2δr

dt2
= 2

Gm

r2
δr

r
− 8πr2

∂P

∂m

δr

r
− 4πr2

∂ δP

∂m
,

T
d δS

dt
= δǫ− ∂ δL

∂m

46



δL = −64π2r4acT3

3κ

{
∂T

∂m

(

4
δr

r
+ 3

δT

T
− δκ
κ

)

+
∂ δT

∂m

}

.

Equivalently,

∂

∂r

(
δr

r

)

= −1

r

(

3
δr

r
+
δρ

ρ

)

∂

∂r

(
δP

P

)

= −1

P

dP

dr

{

δP

P
+ 4

δr

r
− r3

Gm

d2

dt2

(
δr

r

)}

∂

∂r

(
δL

L

)

= −1

L

dL

dr

(
δL

L
− δǫ
ǫ

)

− 4πr2ρT

L

d δS

dt
∂

∂r

(
δT

T

)

= −1

T

dT

dr

(

4
δr

r
+ 4

δT

T
− δL
L
− δκ
κ

)
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Temporal dependence: δX(r, t) = δX(r)est

d

dr

(
δr

r

)

= −1

r

(

3
δr

r
+
δρ

ρ

)

d

dr

(
δP

P

)

= −1

P

dP

dr

{

δP

P
+

(

4− r
3s2

Gm

)

δr

r

}

d

dr

(
δL

L

)

= −1

L

dL

dr

(
δL

L
− δǫ
ǫ

)

− 4πr2cvρT

L
s
δS

cv
d

dr

(
δT

T

)

= −1

T

dT

dr

(

4
δr

r
+ 4

δT

T
− δL
L
− δκ
κ

)

Boundary conditions

3
δr

r
+
δρ

ρ
= 0

ǫ

(
δL

L
− δǫ
ǫ

)

+ sT δS = 0







at the center
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δP

P
+

(

4− R
3s2

GM

)

δr

r
= 0

4
δr

r
+ 4

δT

T
− δL
L
− δκ
κ

= 0







simple conditions

at the surface

Improve the radiative boundary condition at the surface (Eddington approximation of the

atmosphere)

T4 =
3

4
T4
e (τ +

2

3
) ≈ 3L

16πr2σ
(τ +

2

3
).

τ =
∫ ∞

r
κρ dr ≈ κ∆m

4πr2
.

4
δT

T
+ 2

δr

r
− δL
L
− τ

τ + 2/3

(
δκ

κ
− 2

δr

r

)

= 0.
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Still better: join smoothly with a perturbed atmosphere model

It is not possible to perturb directly

L = 4πR2σT4
e

or L = 4πr2σT4 with τ = 2/3
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Integral expressions

d

dr

(

r2δr
)

= −r2δρ
ρ
,

d δP

dr
+

(

ρs2 +
4

r

dP

dr

)

δr = 0,

scvT
δS

cv
= δǫ− d δL

dm
.

Eq of motion ×4πr2δr and
∫

dr

s2
∫

4πr2ρ|δr|2dr+
∫

4πr2 δr

(
d δP

dr
+

4

r

dP

dr
δr

)

dr = 0.

use eq of continuity, integrate by parts

s2
∫

|δr|2dm+
∫
{

δP

ρ

δρ

ρ
+

4r

ρ

dP

dr

∣
∣
∣
∣

δr

r

∣
∣
∣
∣

2
}

dm = 0
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Express δP in terms of δρ and δS, then δS from the energy eq

s2
∫

|δr|2dm+

∫






Γ1P

ρ

∣
∣
∣
∣
∣

δρ

ρ

∣
∣
∣
∣
∣

2

+
4r

ρ

dP

dr

∣
∣
∣
∣

δr

r

∣
∣
∣
∣

2





dm

+
1

s

∫

(Γ3 − 1)
δρ

ρ

(

δǫ− d δL
dm

)

dm = 0.

s3 +As+B = 0

with A =

∫





c2
∣
∣
∣
∣
∣

δρ

ρ

∣
∣
∣
∣
∣

2

− 4
Gm

r3
|δr|2






dm/I

=

∫
{

c2r2
∣
∣
∣
∣

d

dr

(
δr

r

)∣
∣
∣
∣

2

− r

ρ

d

dr
[(3Γ1 − 4)P ]

∣
∣
∣
∣

δr

r

∣
∣
∣
∣

2
}

dm/I
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B =

∫

(Γ3 − 1)
δρ

ρ

(

δǫ− d δL
dm

)

dm/I

I =

∫

|δr|2dm

A ≈ 1/τ2dyn and B ≈ 1

τ2dynτKH

All non adiabatic terms in B
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Dynamical and secular modes

• From the differential equations:
√

r3

Gm
≈ τdyn

4πr3cvρT

L
≈ τKH

• From the cubic equation:

Let A = A′/τ2dyn, B = B′/τ2dynτKH , s = s′/τdyn and α = τdyn/τKH ≪ 1

s′3 +A′s′+ αB′ = 0

⇒ two roots of the order unity

s′ = ±
√

−A′

and one of order α

s′ = −αB′/A′
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⇒ two roots s of order 1/τdyn and one of order 1/τKH .

• Other arguments: Baker one-zone model, local analysis, numerical computations.

Dynamical/secular modes: remarks

- weakness of the arguments

- in practice, no problems, except when the model is close to dynamical instability

- Secular stability not related to asteroseismology
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Adiabatic radial oscillations

First step in the resolution of the radial pulsation problem: adiabatic approximation.

d

dr

(
δr

r

)

= −1

r

(

3
δr

r
+

1

Γ1

δP

P

)

d

dr

(
δP

P

)

= −1

P

dP

dr

{

δP

P
+

(

4− r
3s2

Gm

)

δr

r

}

3
δr

r
+

1

Γ1

δP

P
= 0 at r = 0

δP

P
+

(

4− R
3s2

GM

)

δr

r
= 0 at r = R
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Dimensionless form

x =
r

R
, q =

m

M
, ξ =

δr

r
, η =

δP

P
, s = −iσ , σ =

√

GM

R3
ω

dξ

dx
= −1

x

(

3ξ+
η

Γ1

)

dη

dx
= −d lnP

dx

{

η+

(

4 +
x3ω2

q

)

ξ

}

3ξ+
η

Γ1
= 0 at x = 0

η+ (4 + ω2)ξ = 0 at x = 1
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Homologous stellar models

r′ = αr , m′ = βm , ρ′ = α−3βρ ,

P ′ = α−4β2P , τ ′dyn = α3/2β−1/2τdyn , . . .

These relations define a Lie group with 2 parameters. It is a symmetry group of the problem.

⇒ ω′ = ω ⇒ σ′ = α−3/2β1/2σ

or, for the periods: τ ′/τ = τ ′dyn/τdyn
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Sturm-Liouville problem

The system can be written as an equivalent 2nd order equation

d

dr

(

Γ1Pr
4dξ

dr

)

+

{

r3
d

dr
[(3Γ1 − 4)P ] + σ2ρr4

}

ξ = 0

with the boundary conditions

dξ

dr
= 0 for r = 0

Γ1R
dξ

dr
+

(

3Γ1 − 4− R
3σ2

GM

)

ξ = 0 for r = R

It is a Sturm-Liouville problem. It has a countable infinity of solutions with

σ2
0 < σ2

1 < . . . < σ2
k < . . . and lim

k→∞
σ2
k = +∞

ξk has exactly k nodes in the interval ]0, R[ and the set of all ξk is a basis in the functional

space of all the allowable displacements.
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Variational principle

Lξ = σ2ξ

with

Lξ = − 1

ρr4
d

dr

(

Γ1Pr
4dξ

dr

)

− 1

ρr

d

dr
[(3Γ1 − 4)P ]ξ

Define a scalar product

(u, v) =

∫

ρr4uv̄ dr

The σ2
k are the stationary values of the functional

Λ(u) =
(u,Lu)
(u, u)
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In particular,

σ2
0 = min

u
Λ(u)

We can write

(u,Lu) =

∫

{Γ1Pr
4
∣
∣
∣
∣

du

dr

∣
∣
∣
∣

2

− r3|u|2 d
dr

[(3Γ1 − 4)P ] }dr .

From this variational principle we can deduce:

1) If Γ1 is constant through the star, then the star is dynamically stable if Γ1 > 4/3 and

unstable if Γ1 < 4/3.

2) If Γ1 is constant through the star and > 4/3, we have

(3Γ1 − 4)
GM

R3
< σ2

0 < (3Γ1 − 4)
GM

R3

∫
q dq

x∫

x2 dq
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Energy of a radial mode

momentum equation

ρ
d2δr

dt2
=

4Gmρ

r3
δr − ∂ δP

∂r
,

multiply by d δr/dt

ρ
d

dt
(
1

2
v2 − 2Gm

r3
δr2) = −∂ δP

∂r

d δr

dt
.

transform the right-hand side

. . . = −~v · grad δP = −div(~v δP) + δP div~v

= −div(~v δP)− 1

2
ρc2

d

dt

(

δρ

ρ

)2

and finally

d

dt
{ρ[1

2
v2 +

1

2
c2(

δρ

ρ
)2 − 2

Gm

r3
(δr)2]} = −div(δP ~v)
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This can be written
d

dt
(ρE) = −div

−→F

with

E =
1

2
v2

︸ ︷︷ ︸

EK

+
1

2
c2
(

δρ

ρ

)2

︸ ︷︷ ︸

EA

−2
Gm

r

(
δr

r

)2

︸ ︷︷ ︸

EG
︸ ︷︷ ︸

EP
and

−→F = δP ~v

Let δr(r, t) = δr(r) cosσt, then

EK(r, t) = EK(r) sin2 σt

EP (r, t) = EP(r) cos2 σt
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Integrate over the whole star

EK(t) =
∫

4πr2ρEK(r, t) dr = EK sin2 σt

EP (t) =

∫

4πr2ρEP (r, t) dr = EP cos2 σt

E(t) = EK(t) + EP (t) = const

then

EK = EP

EK(t) = EP (t) =
1

2
E

E =
σ2

2

∫

δr2dm
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Behaviour of the eigenfunctions

Polytropic model, n = 3

(ξ0, ξ0) = (ξ1, ξ1) = . . .

Radial p1 mode (fundamental)
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Radial p2 mode (1st harmonic)
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Radial p3 mode (2nd harmonic)

67



A few cases of dynamical instability

Cause: Γ1 < Γ1 cr

1) Initial phases of the contraction of a proto-star: dissociation of H2, ionization of H and

He in a large fraction of the mass

2) Final phases of the evolution of massive stars, collapse of the core, initial phase of the

supernova: photodesintegration of heavy nuclei, nuclear equilibrium

56
26Fe

→← 13α+ 4n
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3) Very high density white dwarfs:

- relativistic degeneracy: Γ1 ≈ 4/3

- inverse β decay

(Z,A) + e− →← (Z − 1, A) + ν

- general relativity

Γ1 cr =
4

3
+ Λ

GM

Rc2

⇒ no stable stellar configuration with 3× 109 g cm−3 < ρc < 1014 g cm−3

4) Maybe a situation close to instability in the envelope of S Dor variables (LBV):

β ≈ 0⇒ Γ1 ≈ 4/3 stengthens the effect of ionization.
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Asymptotic expression of radial frequencies

- Useful to understand which factors influence the frequencies

- Not precise enough for the computations

The principle: change of variables to transform the differential equation to an approximation

of a well-known equation.

d

dr

(

Γ1Pr
4dξ

dr

)

+

{

r3
d

dr
[(3Γ1 − 4)P ] + σ2ρr4

}

ξ = 0

Define

τ =
∫ r

0

dr

c
w = r2(Γ1Pρ)

1/4ξ

Then

d2w

dτ
+ {σ2 + f(τ)}w = 0

70



First approximation

d2w

dτ
+ σ2w = 0⇒ wk ∝ sinσkτ

with σk = kπ/τR for k = 1, 2, 3, . . .

wk has k − 1 nodes in the interval ]0, τR[.

Next approximation

• Study of the singularity at the centre

d2w

dτ2
+ {σ2 − 2

τ2
+ g(τ)}w = 0

If far enough from the surface neglect g(τ), define z = στ and w =
√
zu(z)

d2u

dz2
+

1

z

du

dz
+

(

1− 9

4z2

)

u = 0

⇒ u(z) = J3/2(z) and w(τ) ≈ sin(στ − π
2) far from the center
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• Study of the singularity at the surface

Effective polytropic index ne such that

ρ ∝ (R− r)ne and P ∝ (R− r)ne+1.

τR − τ ∝ (R− r)1/2, ρ ∝ (τR − τ)2ne,
P ∝ (τR − τ)2ne+1 and c ∝ (τR − τ).

d2w

dτ2
+



σ2 −
n2
e − 1

4

(τR − τ)2
+ h(τ)



w = 0,

If far enough from the center neglect h(τ),

define z = σ(τR − τ) and w =
√
zu(z)

d2u

dz2
+

1

z

du

dz
+

(

1− n
2
e

z2

)

u = 0

⇒ u(z) = Jne(z) and w(τ) ∝ sin(στ − στR − π
4 + neπ

2 ) far from the surface
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Join both pieces of solution in τ∗

You obtain the condition

στ∗ − π
2

= στ∗ − στR −
π

4
+
neπ

2
+ kπ

or

σk =

(

k+
ne

2
+

1

4

)
π

τR
for k = 1, 2, . . .
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Vibrational stability

Take the imaginary part of

s2
∫

|δr|2dm+
∫
{

δP

ρ

δρ

ρ
+

4r

ρ

dP

dr

∣
∣
∣
∣

δr

r

∣
∣
∣
∣

}

dm = 0

2ℜsℑs = −
ℑ
∫
δP

ρ

δρ

ρ
dm

∫

|δr|2dm

Tranform the numerator
- eq of state + conservation of the energy
- or cubic equation in the form s2 +A+B/s = 0

2ℜsℑs =

ℑ1

s

∫

(Γ3 − 1)
δρ

ρ

(

δǫ− d δL
dm

)

dm
∫

|δr|2dm
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Quasi-adiabatic approximation

s = σ′ − iσ, nonadiabatic solution considered as a small perturbation of the adiabatic

solution⇒ a simple expression for σ′

σ′ =
1

2σ2

∫
δT

T

(

δǫ− d δL
dm

)

dm
∫

|δr|2dm

Physical interpretation

Denominator ∼ energy of the pulsation

E =
σ2

2

∫

|δr|2 dm
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Numerator ∼ power of a thermodynamic cycle
{

P(t) = P0 + a cos(φ− σt)
ρ(t) = ρ0 + b cos(ψ − σt)

or

{

δP(t) = δP e−iσt (δP = aeiφ)

δρ(t) = δρ e−iσt (δρ = beiψ)

T =
∮

P dV =
πab

ρ2
sin(φ− ψ) = πℑ

(

δP

ρ

δρ

ρ

)

W =
T
τ

=
σ

2
ℑ
(

δP

P

δρ

ρ

)

W =
σ

2
ℑ
∫
δP

ρ

δρ

ρ
dm =

1

2

∫
δT

T

(

δǫ− d δL
dm

)

dm
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The expression for σ′ reduces to expected result

σ′ =
W

2E

If amplitude ∝ eσ′t then E ∝ e2σ′t and

2σ′ =
1

E

dE

dt
=
W

E

Interest of the integral expression for σ′:
- the mechanism of the excitation

- the seat of the instability

Value of the quasi-adiabatic approximation:

- very good in the interior

- very poor in the external layers
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center
adiabatic

zone

transition

zone

non

adiabatic

zone

surface

The transition zone may be defined such that

cvT ∆m ≈ Lτ

In the nonadiabatic zone cvT ∆m≪ Lτ and from the equation of energy conservation

∆
δL

L
≈ cvT ∆m

Lτ

δS

cv

shows that δL ≈ const.
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Nuclear excitation

∫
δT

T
δǫ dm

=

∫

(Γ3 − 1)[ǫρ + (Γ3 − 1)ǫT ]

(

δρ

ρ

)2

ǫ dm > 0

Contribution from the internal layers. For main sequence stars, this term is reponsible for

instability for masses above Mcr ∼ 90− 120 M⊙.

The transfer term

−
∫
δT

T

d δL

dm
dm = −

∫
δT

T

d δL

dr
dr
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Physical interpretation: if δL decreases outwards when δT > 0, then the matter absorbs

heat at high temperature and releases it at low temperature, like an engine, and produces

positive work.

The main contribution comes from the external layers.

In a radiative zone, the main terms of the equation of transfer give

δL

L
≈ [(4− κT )(Γ3 − 1)− κρ]

δρ

ρ

and
δT

T
= (Γ3 − 1)

δρ

ρ

The effect of this term is mainly determined by the sign of the coefficient

−[(4− κT )(Γ3 − 1)− κρ]
Generally Γ3 ≈ 5/3, κρ = 1, κT = −3.5 and the term of transfer has a stabilizing

effect.
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Conditions for excitation (κ-mechanism):

1) Γ3 − 1 small (partial ionization)

2) κT > 0 (opacity due to H−)

The variables of the instability strip (δ Sct, RR Lyr, δ Cep, W Vir, RV Tau) owe their

instability to the κ-mechanism taking place in the zone where He+
→← He++

For the Mira variables the partial ionization of hydrogen H
→← H+ is responsible for the

instability.

In β Cep variables, an increase of opacity due to Fe at T ≈ 2 × 105 K is the cause of

the instability.
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Ratio between the amplification time τ ′ = 1/σ′ and the period τ

Variable type τ ′/τ
δ Sct 104 – 106

δ Cep and RR Lyr 102 – 103

W Vir 10 – 20
Long period var (Mira) 1 – 10
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The instability strip

Computations

- κ-mechanism: 2nd He ionization zone +

small contribution 1st He and H ioniz. zones

- blue edge: OK

- red edge: problems with convection

Simple explanations for the existence of the instability strip and for the phase lag of the

light.

Interpretation of J.P. Cox

1)
δL

L
≈ [(Γ3 − 1)(4− κT )− κρ]

δρ

ρ
2) In the external layers, δL/L increases ∼ exponentially with r in adiabatic region, but

remains constant in non adiabatic region
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We suppose δT/T > 0
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The phase lag

The pulsation of δ Sct

(a) light curve,

(b) temperature,

(c) radius,

(d) radial velocity
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Adiabatic theory: max of δρ, δT , δL and min of δr simultaneous.

True below the H ionization zone.

The luminosity acquires its phase lag in the H ionization zone (in the non adiabatic region

!). Thanks to its high cv, the ionization front can absorb energy and moves through the

stellar material. Its position (and the outgoing luminosity) lags behind the inner luminosity

in the same way as the charge of a condenser lags behind the difference of potential at its

terminals.

This mechanism cannot exist in stars with

Te > 104 K. This is in agreement with observations: no phase lag in β Cep variables.
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Secular stability

secular modes

associated with s in energy equation

s2 term in motion equation now negligible

s3 +As+B = 0 with

A ≈ 1/τ2dyn B ≈ 1/τ2dynτHK

s3 term negligible

s = −B
A

= −

∫

(Γ3 − 1)
δρ

ρ

(

δǫ− d δL
dm

)

dm

∫

{c2r2
∣
∣
∣
∣

d

dr

(
δr

r

)∣
∣
∣
∣

2

− r

ρ

d

dr
[(3Γ1 − 4)P ]

∣
∣
∣
∣

δr

r

∣
∣
∣
∣

2

}dm
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Approximation: eigenfunctions replaced by a perturbation describing a homologous trans-

formation.
δr

r
= −1 ,

δρ

ρ
= 3 ,

δP

P
= 4 ,

δT

T
=

4− 3Pρ

PT

Then
δL

L
= 4

δr

r
+ 4

δT

T
− δκ
κ

= −4− 3κρ +
4− 3Pρ

PT
(4− κT )

and

s ≈ − (Γ3 − 1)L

(Γ1 − 4
3)|Ω|

{3κρ + 3ǫρ + 4 +
4− 3Pρ

PT
(κT + ǫT − 4)}

where Ω = −
∫
Gmdm

r
is the gravitational potential energy of the star.
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Consequences:

1) s ≈ 1/τKH
2) We suppose dynamical stability, Γ1 > 4/3, then the secular stability criterion reads

3κρ + 3ǫρ + 4 +
4− 3Pρ

PT
(κT + ǫT − 4) > 0

Perfect gas

Secular stability criterion

3κρ + κT + 3ǫρ + ǫT > 0

For a main sequence star

κρ ≈ 1 , κT ≈ −3,5 , ǫρ ≈ 1

For pp chains ǫT ≈ 6 for T ≈ 5 × 106 K and for the carbon cycle ǫT ≈ 13 for

T ≈ 5× 107K. Main sequence stars are secularly stable.
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Consider an infinitesimal homologous transformation

δr

r
= −1 ,

δρ

ρ
= 3

δP

P
= 4 ,

δT

T
= 1

Then
δǫ

ǫ
− δL
L

= 3κρ + κT + 3ǫρ + ǫT > 0

The increase in nuclear energy production is not entirely compensated by the variation of

the luminosity. It results in an increase in temperature and pressure able to oppose a further

contraction.

Degenerate matter

Pρ ≈ 5/3 , PT ≈ 0
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and the secular stability criterion reads

ǫT + κT − 4 < 0

In degenerate matter, energy transport is provided by conduction and

κ ∝ ρ−2T2 et κT ≈ 2

The presence of nuclear fuel in degenerate matter leads to instability.

Consider a perturbation described by

δr

r
=
δρ

ρ
=
δP

P
= 0 ,

δT

T
= 1

Then
δǫ

ǫ
− δL
L

= ǫT + κT − 4 > 0
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The increase in nuclear energy production is not entirely compensated by the variation

of luminosity. It results in a further increase in temperature. The pressure is almost

independent of temperature and is unable to oppose the resulting thermal runaway. This

runaway is only stopped when the temperature is high enough so that the matter is no

longer degenerate.
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Application to the stellar evolution

1) Linear series: local unicity of stellar models, bifurcation diagram, critical values, and

s = 0.
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Stars with a hydrogen shell source: the Schönberg-Chandrasekhar limit

qSC = qc2 = 0.37
(
µe
µc

)
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2) Cepheids

5M⊙ < M < 10M⊙
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3) Helium flash

4) Nova phenomenon
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Non radial oscillations

Spherical coordinates
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Some differential operators in spherical coordinates

∆α =
1

r2
∂

∂r

(

r2
∂α

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂α

∂θ

)

+
1

r2 sin2 θ

∂2α

∂φ2

=
1

r2
∂

∂r

(

r2
∂α

∂r

)

− 1

r2
L2α

where

L2 = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2
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Perturbation equations

−→
δr = δr ~er + r δθ ~eθ + r δφ sin θ ~eφ

We suppose we have already separated the factor est

Equation of continuity

ρ′+ δr
dρ

dr
+ ρ

{

1

r2
∂

∂r
(r2δr) +

1

sin θ

∂

∂θ
(sin θ δθ) +

∂ δφ

∂φ

}

= 0

Equations of motion

s2δr = −∂Φ
′

∂r
+

ρ′

ρ2
dP

dr
− 1

ρ

∂P ′

∂r

s2r δθ = −1

r

∂Φ′

∂θ
− 1

ρr

∂P ′

∂θ

s2r sin θ δφ = − 1

r sin θ

∂Φ′

∂φ
− 1

ρr sin θ

∂P ′

∂φ
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Poisson equation
1

r2

(

r2
∂Φ′

∂r

)

− 1

r2
L2Φ′ = 4πGρ′

Energy equation

sT

(

S′+ δr
dS

dr

)

= ǫ′+
ρ′

ρ2
1

r2
d

dr
(r2F)

−1

ρ

{ 1

r2
∂

∂r
(r2F ′r) +

1

r sin θ

∂

∂θ
(sin θ F ′θ) +

1

r sin θ

∂F ′φ
∂φ

}

.

Transport equations

F ′r = −λ′dT
dr
− λ∂T

′

∂r
,

F ′θ = −λ
r

∂T ′

∂θ
,

F ′φ = − λ

r sin θ

∂T ′

∂φ
.

A difficult problem. We turn directly to adiabatic approximation.
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Separation of the coordinates

Yℓm(θ, φ) = aℓmP
|m|
ℓ (cos θ)eimφ and L2Yℓm(θ, φ) = ℓ(ℓ+ 1)Yℓm(θ, φ)

Eq. of motion⇒ δθ, δφ⇒ eq. of continuity

ρ′+ δr
dρ

dr
+

ρ

r2
∂

∂r
(r2δr) +

ρ

s2r2
L2χ = 0 with χ = Φ′+ P ′/ρ

δr(r, θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ
δrℓm(r)Yℓm(θ, φ) , ρ′(r, θ, φ) = . . .







ρ′ℓm + δrℓm
dρ

dr
+

ρ

r2
d

dr
(r2δrℓm) +

ρℓ(ℓ+ 1)

s2r2
χℓm = 0

s2δrℓm = −dΦ
′
ℓm

dr
+
ρ′ℓm
ρ2

dP

dr
− 1

ρ

dP ′ℓm
dr

1

r2
d

dr

(

r2
dΦ′ℓm
dr

)

− ℓ(ℓ+ 1)

r2
Φ′ℓm = 4πGρ′ℓm
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• Boundary conditions at the center

Regularity of the solution
⇒ 2 boundary conditions
⇒ δr ∝ rℓ−1, P ′ and Φ′ ∝ rℓ

• Boundary conditions at the surface

1) δP = 0⇒ δPℓm = 0

2) Continuity of Φ′ and gradΦ′

For simplicity, we omit the ℓ,m indices. Let Φ′e be the exterior solution.

1

r2
d

dr

(

r2
dΦ′

dr

)

− ℓ(ℓ+ 1)Φ′

r2
= 0 ,

Its regular solution is

Φ′e =
A

rℓ+1
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We impose

δΦ = δΦe

δ
dΦ

dr
= δ

dΦe

dr
or

Φ′+ δr
dΦ

dr
= Φ′e + δr

dΦe

dr
dΦ′

dr
+ δr

d2Φ

dr2
=
dΦ′e
dr

+ δr
d2Φe

dr2

For the equilibrium configuration we have

Φ = Φe
dΦ

dr
=

dΦe

dr
d2Φ

dr2
=

d2Φe

dr2
+ 4πGρ
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The continuity conditions then give

Φ′ =
A

rℓ+1

dΦ′

dr
= −(ℓ+ 1)A

rℓ+2
− 4πGρ δr

And the elimination of A gives the required condition

dΦ′

dr
+
ℓ+ 1

r
Φ′+ 4πGρ δr = 0 .

Degeneracy

skℓm = skℓm′
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Cowling approximation

Φ′ = 0⇒ 2nd order system.

Define v = r2δr P1/Γ1, w = P ′/P1/Γ1 and

s = −iσ, then

dv

dr
=

(

L2
ℓ

σ2
− 1

)

r2P2/Γ1

ρc2
w

dw

dr
= (σ2 − n2)

ρ

r2P2/Γ1
v

with

L2
ℓ =

ℓ(ℓ+ 1)c2

r2

n2 = −Ag where A =
d ln ρ

dr
− 1

Γ1

d lnP

dr
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• Don’t use for computations

• Useful for analytical discussion:

- link with plane waves (Lamb frequency, Brunt-Väisälä frequency)

- classification of the modes

109



Properties of non radial modes

Components of the displacement

−→
δr = δr ~er + r δθ ~eθ + r sin θ δφ~eφ

= δr ~er +
1

rσ2

(

∂χ

∂θ
~eθ +

1

sin θ

∂χ

∂φ
~eφ

)

= [a(r)~ǫ+ b(r)~η] e−iσt

with

χ = Φ′+
P ′

ρ
~ǫ = Yℓm(θ, φ)~er

~η =
∂Yℓm
∂θ

~eθ +
1

sin θ

∂Yℓm
∂φ

~eφ
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It is easy to show that
∫

|~ǫ|2dΩ = 1
∫

|~η|2dΩ = ℓ(ℓ+ 1)

Then
∫

|−→δr|2dm =

∫

ρr2
[

a2 + ℓ(ℓ+ 1)b2
]

dr
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f, p and g modes

Fully convective model
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0

1

2

3

4
l

σ2

f p1 p2 p3g1g2g3

Fully radiative model
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Model with radiative and convective zones
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Nature of the modes

p-modes: compressibility, disappear if Γ1 =∞
sound waves

g-modes: buoyancy, disappear if A = 0

g+: internal gravity waves

evanescent in convective zones

g−: convection

evanescent in radiative zones

f -mode: ?

surface gravity wave
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Eigenfunctions of the standard model (δr/R = xℓ−1ξ)

ℓ = 2, p1
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ℓ = 2, p2
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ℓ = 2, g1
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ℓ = 2, g2
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ℓ = 2, f
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Energy of a non radial mode

E = EK(t) + EP (t) = EK sin2 σt+ EP cos2 σt

EK(t) = EKr(t) +EKh(t)

EP (t) = EA(t) + EG(t) + EB(t)

EKr(t) =

∫
1

2
ρv2r dV

EKh(t) =

∫
1

2
ρv2hdV

EA(t) =

∫
P ′2

2ρc2
dV

EG(t) =

∫
1

2
ρ′Φ′dV

EB(t) =

∫
1

2
ρn2δr2dV
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Polytrope n = 3

Γ1 = 5/3

ρc/ρ̄ = 54.18

Fraction of the kinetic energy in the radial component
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Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Fraction of the kinetic energy in the radial component

123



Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Fraction of the kinetic energy in the core
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Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Radial and horizontal components of the displacement

for l = 2 g5 mode
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Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Radial and horizontal components of the displacement

for l = 2 g6 mode
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Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Radial and horizontal components of the displacement

for l = 2 p4 mode
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Physical model, 1 M⊙
ρc/ρ̄ = 168.3

density discontinuity at

x = 0.0615, q = 0.03
ρ1−ρ2
ρ1+ρ2

= 0.32

Radial and horizontal components of the displacement

for l = 2 p5 mode
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Spheroidal and toroidal modes

The modes studied up to now do not form a basis in the space of all possible perturbations

of a star.

A general vector field may be written in terms of three independant scalar fields

−→
δr = α(~r)~er + gradβ(~r)

︸ ︷︷ ︸

spheroidal

+rot[γ(~r)~er]
︸ ︷︷ ︸

toroidal

The momentum equation can be written as

s2
−→
δr = −gradΦ′ − 1

ρ
gradP ′+

ρ′

ρ2
gradP .

Using the adiabatic relation and the continuity equation we get

s2
−→
δr = −gradχ+ c2 ~Adiv

−→
δr ,
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So that ~δr is of the form

−→
δr = α(~r)~er + gradβ(~r)

In our analysis, we have lost all the zero-frequency modes.

1) Three spheroidal modes with ℓ = 1,

m = −1,0,1 describing solid translations of the star.

−→
δr = a{Yℓm~er +

∂Yℓm
∂θ

~eθ +
1

sin θ

∂Yℓm
∂φ

~eφ}

ℓ = 1 f -modes ?

2) Toroidal modes: horizontal and divergenceless

−→
δr = a(r){ 1

sin θ

∂Yℓm
∂φ

~eθ −
∂Yℓm
∂θ

~eφ} .

They acquire non-zero frequencies in presence of rotation and are of the same nature as

Rossby waves.
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Asymptotic expression for the frequencies

Difficulty: even with Cowling approximation, moving singularities.

p-modes

σkℓ ≈

(

k+
ℓ

2
+
ne

2
+

1

4

)

π

∫ R

0

dr

c

=⇒

σk+1,ℓ − σk,ℓ ≈ const

σk,ℓ ≈ σk−1,ℓ+2

σk,ℓ+1 ≈ (σk,ℓ + σk+1,ℓ)/2
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g-modes

√

ℓ(ℓ+ 1)

|σkℓ|
≈

(

k+
ℓ

2
+ const

)

π

∫ |n|
r
dr
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Effect of a slow rotation on the frequencies

small rotation around the z-axis: Ω(r, θ)

- Ω taken into account in the Coriolis force

- Ω2 neglected in the centrifugal force

(
∂

∂t
+ ~v · grad

)2−→
δr = L−→δr

with ~v = Ωr sin θ ~eφ.

Looking for solutions
−→
δr = ~ξe−iσt and neglecting terms in Ω2,

σ2 ξ+ 2σM ξ+ L ξ = 0

withMξ = i(~v · grad)ξ.

M is hermitian and linear in Ω. The problem can be solved by a perturbation method

presented in elementary textbooks of quantum mechanics (degenerate case !)
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We write σ = σ0 + σ1 and ξ = ξ0 + ξ1 and we obtain easily

σ1 = −(Mξ0, ξ0)

(ξ0, ξ0)

The explicit expression of σ1 is rather tedious to calculate. It is given by an integral

expression involving Ω and the eigenfunctions of the problem without rotation.

rotational splitting⇔ degeneracy entirely lifted

If Ω = Ω(r), the expression simplifies to

σ1 = m
∫

Kkℓ(r)Ω(r) dr

with

Kkℓ(r) =
ρr2[a2 + ℓ(ℓ+ 1)b2 − 2ab− b2]

∫

ρr2[a2 + ℓ(ℓ+ 1)b2] dr
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For a uniform rotation, we have the usual expression

σkℓm = σ0
kl +mβklΩ

with

β =

∫

Kkℓ(r)dr

Toroidal modes

In presence of rotation, toroidal modes acquire non zero frequencies. Their dynamics

is governed by the Coriolis force as Rossby waves or planetary waves. They have low

frequencies. For uniform rotation

σ = mΩ− 2mΩ

ℓ(ℓ+ 1)
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Non-linear radial oscillations

Why non-linear oscillations ?

- In δ Cep and RR Lyr variables, δr/r ≈ 5–10%

and δP/P = (4 + ω2)δr/r

- shock wave in atmosphere of W Vir variables

- non sinusoidal light curves

- finite amplitudes

Lagrangian formalism

ρr2
∂r

∂r0
= ρ0r

2
0

∂Φ

∂r
=
Gm

r2
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d2r

dt2
= −Gm

r2
− r2

ρ0r
2
0

∂P

∂r0

T
dS

dt
= ǫ− 1

4πρ0r
2
0

∂L

∂r0

L = −16πr4acT3

3κρ0r
2
0

∂T

∂r0

Adiabatic approximation

dP

dt
= c2

dρ

dt

If Γ1 is constant,

P

P0
=

(

ρ

ρ0

)Γ1

=

(

r20
r2∂r/∂r0

)Γ1
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d2r

dt2
= −Gm

r2
− r2

ρ0r
2
0

∂

∂r0



P0

(

r20
r2∂r/∂r0

)Γ1




• Separation of variables

1) if Γ1 = 4/3

2) homogeneous model (ρ0 independent of r0)

• Series developments

r = r0(1 + ξ) et ξ =
∞∑

i=0

fi(r0)qi(t),

1) qi(t) = harmonic functions (Fourier development, Eddington)

2) fi(r0) = eigenfunctions
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Numerical integrations

In the sixties, equations for radial pulsations with initial conditions were solved by hydro-

dynamic lagrangian codes with ∼ 50 shells and ∼ 200 time steps

- success for Cepeids and RR Lyr

- limit cycle

- little change in periods

- rather good light curves

But

- numerical tricks to ensure the stability of the code or to follow shock waves

- depending on the type of variable, huge computation time may be necessary for the

damping of stable modes and to reach full amplitude for the unstable ones

Alternative procedure

- direct search for a limit cycle, but delicate to work out
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Regular and chaotic pulsations

A few classes of variable stars in the HR diagram
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Light curve of W Vir
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Light curves of two RV Tauri variables: U Mon (92.3 d) and R Sct (140.2 d)
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Light curves of three SRb variables: AF Cyg (94.1 d), L2 Pup (140.8 d) et Z UMa (196 d)
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Period-luminosity relation of W Vir, RV Tau and semi-regular variables of globular

clusters (periods in days) For RV Tau variables, the half-periods have been used
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Stability of pop II envelope models of decreasing Te from a to f.

r/1010cm (abscissa) versus v/kms−1 (ordinate) for a given shell
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