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ABSTRACT

We present a semi-analytical algorithm to derive self-consistent SB2 orbital solutions
for both components of a spectroscopic binary system. The method combines an or-
thogonal regression technique and an adaptation of the Wolfe et al. (1967) code, which
allows to derive SB1 orbital solutions with only a limited a priori assumption on the
period value and none on the other orbital parameters. The present algorithm pre-
serves much of the advantage of the original Wolfe et al. method, in particular no
fastidious exploration of the 8-dimension parameter space is required. As an illustrat-
ing case, the method is applied to the well known HD 152248 O+O colliding wind
binary.

Key words: Binaries: spectroscopic — Stars: fundamental parameters — Methods:
numerical

1 MOTIVATION AND ORIGINAL IDEA

In an eccentric binary, the radial velocity v of a component can be written as a function of the true anomaly 6 through the
equation (e.g. Aitken 1935) :

v(0) = v+ K sini(cos(w + 0) + ecos0) (1)

or similarly
o.od o d, .
v(0) =y +sini sinw— (rcosf) + sini cos wa(r sin 0) 2

where 7 is the distance to the center of mass. The other notations used are defined in Table 1.

For an SB1 system, thus for which only the radial velocity (RV) of one component out of the two can be measured, we (i.e.
the Liege team) usually adopt the Wolfe et al. (1967, hereafter WHS67) semi-analytical method. Briefly the method is that
of Wilsing-Russell (Wilsing 1894; Russell 1902), followed by a differential correction (D.C.). From first guess of the period,
the algorithm uses a development of r cosf and rsin # in harmonic series of the mean anomaly, that uses Bessel functions of
the eccentricity. The Bessel functions are then developed in asymptotic series of the eccentricity to obtain a set of equations
that linearly depends on parameters C}’s and Si’s. These latter are themselves functions of the orbital parameters. Thanks
to the linearity of the system, the Cf’s and Si’s can be derived by a least square technique. In a second step, the non linear
equations giving the orbital elements as a function of the Ci’s and Sk’s are solved iteratively. For the case of moderate or
large eccentricities, the preliminary orbit so obtained can be improved by means of a D.C. method. At this stage, the period
can also be adjusted.

In an SB2 system, one can write Eq. 1 or Eq. 2 for each of the two components of the system, so that e.g.:

v1(0) = =~ + Kisini(cos(wr + 60) + ecosb)
v2(0) = 72+ Kasini(cos(wz + 0) + ecosb)
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2 H. Sana

Table 1. Adopted notations for the orbital parameters of a massive binary system.

Notation  Description

P Orbital period
i System inclination
e  Orbit eccentricity [0,1]
To  Time of periastron passage (e # 0) or time of primary conjunction (e = 0)
w  Longitude of the periastron (e # 0)
Ki,2 Radial velocity curve semi-amplitude for component 1, 2
v1,2  Apparent systemic radial velocity associated with component 1, 2
a1,2 Semi-major axis of the orbit of component 1, 2. We also note a = a1 + a2
M2 Mass of component 1, 2
g= Mi/M> Binary component mass ratio
RRL112 Roche lobe radius associated with component 1, 2

Because of the coupling between these two equations (through the variables e, we = m+w; and P), the WHS67 method can
not directly be used to provide a common orbital solution. Alternatively one could consider both the primary and secondary
data sets as independent SB1 sets and one could derive a separate solution for both components. However, as seen in Table 2,
this provides two distinct values for the common parameters, i.e. those parameters that induce a coupling between the Egs. 3.

Of course one could implement appropriate numerical methods to solve non-linear systems of equations. However, to
our knowledge, these methods rely on an accurate first guess of the solution or on complicated parameter space exploration
algorithms (such as the so-called genetic algorithms). The latter can be quite heavy to implement in the present 8-dimension
(P, e, w, To, K1, K2, 71 and v2) parameter space. One of the advantages of the WHS67 algorithm is, indeed, the fact that no a
priori assumption on the probable location of the exact solution in the parameter space is needed, except for the period (which
can easily be obtained thanks to e.g. a Fourier analysis technique). It is thus efficient in terms of computer resources and it
is robust for a large range of eccentricities (up to e = 0.8 according to WHS67). These characteristics make very attractive
the WHS67 method. In the present work, our aim has been to build an algorithm able to consistently deal with SB2 system
while preserving the advantages of the WHS67 method.

To do so, we adopted the following idea as a guideline. The input SB2 data set is converted into an equivalent SB1 data
set by applying an appropriate transformation on the measured radial velocities. The SB1 set so created is then used as an
input for the WHS67 method. As a last step, the obtained equivalent SB1 solution undergoes an inverse transformation that
finally yields the desired SB2 orbital solution. The sketch of Fig. 1 summarizes the basic reasoning of the proposed method.
The next section describes into more details the transformation adopted.

2 THE TRANSFORMATION IN THE RV SPACE

The transformation from the SB2 to the equivalent SB1 data set relies on the following observation. Given the Egs. 3 and the
fact that, in a Keplerian binary, wa = w1 + 7, one can write:

vi(f) —n v2(0) — 72
= — 4
K, K> (4)
or equivalently
v2(0) = b+ cvi(0) (5)
with b = v2 — %71 and ¢ = —%. This latter equation is linear in the parameters b and ¢ and, given a set of £k = 1...N

observation couples (v1(0x),v2(0k)), the system can be solved using a linear least-square technique. However, by opposition
to the case usually encountered, both variables v; and v2 are spoiled by errors of similar magnitudes. We therefore apply a
so-called orthogonal linear regression, the details of which are discussed in a dedicated section (Sect. 3). For the present time,
let us assume that, given an appropriate technique, the b and ¢ parameters and an estimate of their related errors, can be
determined. At this stage, we note that these parameters already provide valuable information on the physical properties of

Ky _ M

the binary system as ¢ = — 22

K- = —im SO that the mass ratio is directly obtained without any a priori assumption on the

system parameters.

At this stage, one could think that our aim has been reached. Indeed according to equation Eq. 5, it is a child game,
knowing the values of b and ¢, to convert the secondary RVs into equivalent primary velocities. Starting with an SB2 set of
N couples (vq (9;@),112(0;6)):3\’, we result with an SB1 set containing 2N velocity points: the N primary RV measurements

© 2002 RAS, MNRAS 000, 1-19



SB2 Equivalent Equivalent SB2
data set SB1 data set SB1 solution solution

Figure 1. Sketch of the underlying idea for adapting the WHS67 method to SB2 system.

and N points resulting from the conversion of the secondary RVs to equivalent primary data points. As schematized in Fig.
1, this equivalent SB1 set can now be used as an input of the WHS67 algorithm. This provides the orbital elements for, in the
considered case, the primary component: e, w, Ty, K1 and 71 as well as their respective errors. We then apply the “inverse”
transformation to derive the remaining secondary parameters K> and 7y, from the expressions of b and c. Error estimates follow
from the error propagation theory. As an illustrating case, Table 2 presents to orbital solution of the HD 152248 binary (using
the data set of Sana et al. 2001) that was computed using the here described method (column: v — v1). It also illustrates one
of the drawback of this way of converting the SB2 data into an equivalent SB1 set. HD 152248 is a binary with two almost
identical components. The strengths of their spectral lines are thus very similar and their RVs are measured with a similar
accuracy. However, as seen from Table 2, the orbital elements associated with the primary are much better constrained than
those associated with the secondary. This results from the additional conversion applied to recover the secondary parameters
once the primary solution has been obtained. This unfortunately yields an additional propagation of the errors, leading larger
estimates for the secondary parameter uncertainties. Proceeding in the opposite way (i.e. converting the primary velocities
into equivalent secondary ones, computing the secondary orbital solution and finally deriving the remaining elements for
the primary) yields the symmetric situation. The secondary parameters are now much better constrained compared to the
primary ones (see Table 2, column v; — wv2). Note that this problem only concerns the error estimates. The values of the
orbital parameters are of course not affected.

To circumvent this drawback, we propose now an alternative approach which, in some way, arrange things so that both
components “meet halfway”. Rather than transforming the RVs of one component into equivalent RVs of the other component,
while the actual measurements of the RVs associated to the later components remain unchanged, we now propose to transform
both components velocities, in order to create a fake SB1 data set that is equivalent to the SB2 system. The orbital solution
of this equivalent SB1 system can be obtained through a modified version of the WHS67 algorithm! and allows, in a last step,
to deduce the true SB2 solution. This equivalent SB1 system will be noted by an asterisk (*) in the following and is described
by the equation :

v*(0) =T + Ksini(cos(w + 0) + ecosb). (6)

It has the same eccentricity e, the same longitude of periastron w and the same time of periastron passage Tp than the real
SB2 system. In Eq. 6, I' and K are the systemic velocity and the semi-amplitude of the RV curve of the fake SB1 system.
They respectively correspond to the difference between the systemic velocities of the two components of the real SB2 system
and to the geometric average of their RV curve semi-amplitudes :

I = m—7 (7)
K = VKK (8)

The corresponding velocity transformation is given by :

b
’UT = 4/ —C ('Ul — 17_0)

_ 1 b
o= = (”2 - ﬁ)
The two components are now symmetrically handled. When computing the primary and secondary RV curve semi-amplitudes
and their related errors from Eq. 8, one can show that : Z¥1 — ZX5 The relative errors on the primary and secondary RV-

Kq Ko
curve semi-amplitudes are now equal and the previous asymmetric situation is avoided. Physically speaking, for a system with

two identical components such as HD 152248, the parameters specific to the individual components will now be determined

with the same accuracy. In the case of two different stars in a binary system, their respective RV-curve semi-amplitude will
be measured with a relative accuracy related to their mass-ratio: Z? = 1% = % Though it can not be appropriate for all
1

binary systems, it has been successfully apply to various SB2 massive binaries.

1 Actually, the WHS67 algorithma had to be slightly updated because of the sign difference between the primary and secondary RV
equations. This results from the fact that wo = w1 + 7 (see e.g. Egs. 3).
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Table 2. Orbital and physical parameters of the HD 152248 binary computed using various techniques. The data were taken from Sana
et al. (2001). The same weights have been given to the primary and secondary points. The notations of Table 1 have been used. The
period has been kept constant to render a direct comparison more easy. * — y has the meaning of ‘conversion from z to y’.

Individual solutions Common solutions

U1 v2 v2 — U1 v — U2
P (d) 5.816005 5.816005 5.816005 5.816005 5.816005
Sy/Sx n.a. n.a. 1.0 1.0 1.0
mi/mo n.a. n.a. 0.989 £+ 0.011  0.989 + 0.011  0.989 £ 0.011
e 0.133 £ 0.006 0.134 + 0.007 0.134 £ 0.006 0.134 4+ 0.006  0.134 £ 0.005
w1 (°) 80.6 + 4.2 85.622 + 4.8 83.2 £ 4.2 83.2 £ 4.2 83.1 + 3.2
To (HID 2003.827 2003.863 2003.846 2003.846 2003.846
—2450000) + 0.064 + 0.073 + 0.064 + 0.064 + 0.050
Ky (kms™1) 216.6 £ 1.2 n.a. 216.7 £ 1.3 216.7 £ 4.2 216.7 £ 1.5
Ky (kms™1) n.a. 2143+ 1.5 214.2 £ 4.2 2142 + 1.3 2142 £ 1.5
~v1 (kms~1) -03+14 n.a. 0.7+ 1.4 0.7 + 3.4 0.7+ 15
~2 (kms™1) n.a. -0.6 £ 1.6 04+ 34 04+14 04=£15
ram.s. (kms™1) 7.0 8.2 8.0 8.0 8.0

3 THE ORTHOGONAL LINEAR REGRESSION

This section summarizes the main properties of the orthogonal linear regression technique applied to fit the v2 vs. v; relation
(Eq. 5). The detailed calculation are provided in App. A. Let us consider a data set formed by N couples of measurements
(zk,yr) to which one want to fit the linear model y = cx + b. The usual linear least-square technique minimizes the merit
function :

N
2= Z AZ with Ay =uyp —car — b, (10)
k=1

eventually taking into account various weights or error estimates for the measurements. Eq. 10 actually minimizes the sum

of the square deviations (Ag) to the best fit model, these deviations being measured along the y-axis. This is an intuitive

Ykt+b
(&

approach when o, >> o,. Alternatively, when o, << 0., one could use Ay = x — (as long as ¢ # 0). However, when

the two variables have uncertainties of the same order of magnitude, one may rather prefer to measure the Ax’s along a
direction which is orthogonal to the best fit model rather than along one given axis or along the other. This approach falls

under the generic terms of “orthogonal linear regression”. When all measurements have the same uncertainties, the latter
_ _p)2 . . . e . . — —b)2 .
(yklc#. When dealing with various uncertainties, one can write A? = % When the ratios
+ Tk +ccoz
of the secondary to primary uncertainties are all equal whatever the considered measurement couple k, this can be rewritten
A2 1 (yp—cai—b)?
as: Ay = T B

principle yields A2 =
where s = 0y /0. = 0y, [0a, VE.

The latter situation is often encountered while dealing with SB2 RV measurements. Indeed one can often estimate that,
given the considered stars, the primary RVs are s times more accurate that the secondary ones. However, it is often more
difficult to obtain an accurate estimate of the amplitude of these uncertainties. Experimental scientists have since long been
facing such kind of problems, which they usually circumvent by adopting a proper relative weighting for the measurements
rather than an absolute weighting. In this latter case, the appropriate merit function can be written :

N

_ _1\2
ngzwk(yk ok —b)"

52 + c2

(11)

where wy, is the weight given to the measurements of the couple (zx, yx). The present approach is equivalent to the one that
adopts the primary weight wp, = wx while the secondary ones are given by ws, = wp, /32. In this configuration, one can
show that the orthogonal least square solution is given by (App. A) :

s(F+/F2 + 1),

Yy —cx.

S, — s%S,

F =
25Cy

with

In the latter equations, one have used the following notations :
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Sy=y2-7 ﬂzzﬂi y? = szv (14)

>
Wi
k=1 k

Under these hypotheses and notations, it is possible to show that the theory of error propagation yields an analytical
expressions for the related uncertainties :

ol = ]\;62.7: (15)

o = ic\;'(s + &+ FTF) (16)

where

F = L;QSQC and  xi = N—X2 (17)
C3y (N —2)3 0wy,

4 FINAL REMARK

The present method requires a preliminary guess of the orbital method as well as an estimate of the ratio s between the
secondary and primary uncertainties. While the first can be obtained through e.g. a Fourier analysis, the latter might be
more difficult to accurately estimate. The present method can provide an original way to circumvent this problem. Indeed the
method is based on the construction of a fake SB1 data set that is equivalent to the SB2 physical system. The construction
of this fake set relies on the best fit parameters (see Egs. 12 and 13) of the vz vs. vy relation and given. The latter solutions
depend to some extent on the adopted value of s. As a consequence, if the adopted s value does not reflect the true ratio
between the primary and secondary uncertainty, the conversion of the primary and secondary RVs will provide inconsistent
contributions to the fake SB1 system. Thus, the final fit will not be good and large differences between the data and the final
SB2 solution will be observed. Hence, one can naturally use an exploration of the parameter space to estimate the s ratio
while minimizing the square deviations between the observations and the computed SB2 solutions:

Cos = :zfl Wy, (Vp, — 11 — K1 (cos (w + 0x) + ecosw)) +Z wS,c (vs, — 2 + K2 (cos (w 4 1) + ecosw))? (18)

SB2 = — .

=N
k=1 Wpi t Zk:1 Ws

As a conclusion and assuming that s is also a free parameter of the model, the method presented here allows to restrict the

exploration of the 9-dimension (actually 8 dimensions + one for s) parameter space to a single direction corresponding to s.

5 SUMMARY

We have shown that, using an appropriate transformation, it is possible to adapt the WHS67 algorithm to derive consistent
orbital solutions for the two parameters of an SB2 system. The propose method relies on a linear orthogonal regression
technique that yields the best fit parameters of the relation v2 = cvi + b, where ¢ = —K3 /K1 = —Mi1/M> and b = v2 + ¢71.
Hence the mass ratio is obtained with no a priori assumption on the system, not even a first guess of the orbital period.
We have shown that, if the ratio of the primary and secondary RV measurements can be taken as constant for all the
measurements, it is possible to derive a simple analytical expression to estimate the uncertainties on the best fit parameters
b and ¢ and, hence, on the system mass-ratio. We outline that the present algorithm presents much of the advantages of the
original WHS67 method. In particular, it only requires a first guess of the orbital period. All the other orbital parameters
are obtained without any a priori assumption on their location in the parameter space. Hence, the method does not need
to explore the 8-dimension parameters and, as such, is pretty efficient in terms of computation time. Finally, as the WHS67
method, the present algorithm is adapted to a wide range of eccentricities although a detailed study of the break up point is
still lacking.

ACKNOWLEDGMENTS

The original idea of transforming the RVs of one component into equivalent RVs for the other component was initially
suggested by Dr. G. Rauw.

© 2002 RAS, MNRAS 000, 1-19



6 H. Sana

REFERENCES

Aitken R., 1935, The Binary Stars, 2nd edition edn. McGraw-Hill Book Company, Inc., USA

Bevington P., 1969, Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Company, Inc., USA

Brauwer D., Clemance M., 1961, Methods of Celestial Mechanics. Academic press, New York

Eggleton P. P., 1983, ApJ, 268, 368

Russell H. N.; 1902, ApJ, 15, 252

Sana H., Rauw G., Gosset E., 2001, A&A, 370, 121

Wilsing J., 1894, Astronomische Nachrichten, 134, 89

Wolfe R. H., Horak H. G., Storer N. W.; 1967, The machine computation of spectroscopic binary elements. Modern astro-
physics. A memorial to Otto Struve, Ed. M. Hack — New-York, Gordon Breach, p. 251

APPENDIX A: ORTHOGONAL REGRESSION: DETAILED CALCULATIONS

Let the merit function given by Eq. 11 :

N
2 _ w (yk—cxk—b)Q
X k 2+ 2
k=1

(A1)

be minimized with respect to the parameters of the model ¢ and b. We thus set the derivative along b and ¢ equal to zero:

ax? 2 _
67%) = —mek(yk—cxk—b) <~ b=y—cT (A2)
k
and
LXQ = Zwk (yx — cxi — b) 2 Zwkwk (yr —cxp —b) =0 (A3)
Oc (32 + c2 212
< cZwk yk + 2 xk +bv° — 2crryr — 2byr + ZCbxk) + (52 + 02) Zwk (xkyk — c:ri — bxk) =0 (A4)
k
= cy? + Ca? + cb? — 2677y — 2cby + 27T + (P + ) Ty — (5° +F) ca® — (" + ) bT =0 (A5)
— cy7+c(i—2c§§+0252)—cmy—?cy +20a:y—i—chy—cSEQ+523Ty—c52?—52f§+052§2:O (A6)
= CQ(EE—Ty)—&—c(y — 5 — %22 + $°T )—l—(s my—szfy) 0 (A7)
= —Clhy + ¢ (Sy — 5°Sa) + 8°Cry =0 (A8)
S5 — 5252) £ \/(Sy — 5252)° + 4C,, 52
— _ ( Y ) \/( v ) Yy (A9)
2Cy
— c:s(Fi F2+1) (A10)
with F' = Sgsg 52 as given by Eq. 12. One can show that the + solution is indeed associated to a minimum of the x?
function. Before computmg the errors, let us first estimate the partial derivatives of c:
e _ (1 2F \_ VPPiifF _ (A11)
oF 2VF? 11 VFZ 1 N
b S8 P78 (P -7) (A12)
B 25Cypy 25(FY — T 7))
2WpYg _ 2wiyY QSCZ — (s, — SQSz 2s WeTl _  WRT
oF <Zl DY wz) & ) IOTID T (A13)
oy 4s2C2,
Wk 1 — 2 —
= S 302, ((yk —7)2C5y — (Sy -5 SI) (zk — x)) (A14)
W 1 . S, — %S, _
_ _a) - _ Al5
S (m M- 2 - ) (A15)
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w 1
= e Gwep-re-9)
l ry
_52 (2wkzk _ 2 )2801 S, —s%8 QS(wkyk )
oF _ Zzwl Zl ! ( ) Zzwl le
0T B 482C%y
B Wk 1 . S—SS( ~9)
o Ez wy Coy k 25C 3y Ye Y
w —1
= S (=T F (=)
l ry

(A16)

(A17)
(A18)

(A19)

Now let us compute the uncertainty on ¢ by mean of the error propagation theory (see e.g. Bevington 1969). In the

following we note the absolute uncertainty o, = o/wi and we assume that the wy have been normalized. Similarly, we

obtained oy, = s?0/wy. Hence :

2
s Oc 2 dc\?
T Z((ay) 7t () (20
LN L (e (ory, (0P,
. %:wk (M) ((amk) ) ® (A21)
o%c? —\2 2 —\2 = =
= w e —Z) +F (ype —Y)  +28F (yp — 9) (2 — T A22
1+F20W Z’“( k= T) (v =) (v — ) (@ ~ @) (A22)
1 2
5 ( (e~ )% + F* (on — 7)° = 2F (g — 7) x)) ) (A23)
2 2
- 11‘;20 7 D (on =% (L F) s (1) (a2
Ty &
2
= 002 ( (Zwks Tk —T) +Zwk ) (A25)
Ty
o2 %8, —I—Sy
= - = 7 A26
LC L5 (A26)
and for b :
ob Wi _ Oc
A T A27
ys. S, oy n
Wi _ c oF
_ _ or A28
Siw VFIE10u A
Wi c Wi 1 (1 _ ,)
_ il _g) = F — A29
Zl wz \/F2+ Zl wy Cuy S(yk 2 (z — ) ( :
Wi 1 ,)
(- G- rin-) o
ob Wi _ Oc
EiA B Tl A3l
Oxk lelc oz, ( i )
Wk cT 1 _ _
= _ - —T) — F (yx — A32
S w (C VESToml y))) o
2
2 _ 2\ L (@)2 LA
o, = © ;wk< oo + o s (A33)
2 22 1 62372 32

Il
U
5
/N
Q
+
QG
&
‘3,
_|_
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2

— Z"wl (c +s2+ S C%y Z Zwk :ckx)2+(yky)2)> (A36)

2255+S>

o? (
= c—l—s—l—c

Do

Finally, one obtains the absolute magnitude of the errors by estimating o. To do so, we assume that the deviation between

A37
C%, (AST)

the data and the model is only due to the measurements uncertainties; then :

_ —p)? 2
ot o e We— e =) x (A38)
(N —2)(s2 1 &) N2

where, as previously, the wy are assumed to be normalized.

APPENDIX B: THE LIEGE SB2 ORBITAL SOLUTION ALGORITHM: AN EXHAUSTIVE
DERIVATION

This section presents the details of the Liége algorithm used to compute SB2 orbital solution. Let us first write Eq. 2 for each

star :
v1 (0) =1 + sinisinwy % (r1 cos ) + sin i cos wi % (r1sin @) (B1)
v2 (0) = 72 + sinisinws % (ra cos ) + sini coswa 2 (12 sin )
Let us note wi = w and wy = w + 7 (hence sinwy = —sinw and cosws = — cosw) and let us adopt the notation M for
the mean anomaly and F for the eccentric anomaly. It is well known that :
. 2
M:E—esmE:?(t—To):u(t—To) (B2)

B1l The harmonic analysis

Following the theory of elliptic motion, let us now rewrite the terms rcos@ and rsinf using harmonic series of the mean
anomaly (see e.g. Brauwer & Clemance 1961, p. 73):

Deosd = cosE—e (B3)
a
= _36 -2 E (se) cos (sM) (B4)
Tsing = /1—e2sinE (B5)
a
V1—e? 2 i 1JS (se)sin (sM) (B6)
e s

where the Js(z) are the Bessel functions of the first kind and J.(z), their first derivatives. In a next step, one develops the
Bessel functions in asymptotic series of the eccentricity. Following Brauwer & Clemance (1961, pp. 79-80), one can write :

r ~ _3 3.2 5 4 7 1 5 2 _ 45 4 567 .6
Zcos ~ se+ (1 g€+ 15s¢€ 9916 € )cosM+( e e + 166 —180 )cos?M—i—( e 158€¢ t 5i50€ )COS3M
1.3 25, 8 125 4 _ 4375 6 27,5 _ 8L 16807 6
+(36°— 26"+ e )cos4M+(384 85e )cos5M+( e )c056M+460806 cos TM

= —%e + Xicos M + £ X cos2M + ?Xg cos3M + IX4 cos4M + ?Xs cosbM + %XG cos6M + %X7 cos TM
Zsinf = (1 — 7e + @e — %86) sin M + ( e— ﬁe + 246 — 4—156 )sm2M+ ( e? — %e + %66) sin 3M
# (36— 5"+ BT A ¢ (e’ — W) M + (e~ H1) smOM + ST (B
= YisinM + %Yg sin 2M + %Yg sin3M + %Y4 sindM + ?Y5 sin bM + ?Yﬁ sin6M + 7Y7 sin 7TM

where the X and Y; are defined so that the equation is verified and depend only on e. In the present development, the
harmonic analysis given by Egs. B4 and B6 have been limited to s = 7, which corresponds to neglect powers of e above the
seventh. Both developments can be rewritten in short by summing on k :

rcosf = —*€+Z = coskM (B9)
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i k—1
Y;
rsinf = Zae 3 k sin kM

k=1

The derivatives with respect the time ¢ can now be easily evaluated :

7

%(rcos 0) = —auZeklek sin kM
k=1
4 7
I (rsinf) = auZek_lYk coskM
k=1

so that the system B1 becomes :

v1 =71 +a1psing (— sinw 22:1 "1 X\ sin kM + cosw 22:1 e*~1Y}, cos kM)
V2 = y2 — agpsini (— sin w Zzzl e* X sin kM + cosw Zzzl e*Y} cos kM)

(B10)

(B11)

(B12)

(B13)

However the time of periastron passage Ty is not known so that one can not compute M directly from the observations.

Adopting an arbitrary time to, one can write
MI,U,('L'—T()) I,U,(t—to)—‘ru(to —T()) :M/-i-M().
Since

cos k (M' + Mo) = cos kM’ cos kMo — sin kM’ sin kM,
sin k (M' + M()) = sin kM’ cos kMo + cos kM’ sin kM,

the system B13 becomes :
v o= m+ alusini( — sinw Zzzl "1 X sin kM’ cos kMo — sin w ZZ=1 e*~1 X}, cos kM’ sin kM,
+ cosw 22:1 " 1Y} cos kM’ cos kMg — cosw 22:1 e*=1Y}, sin kM’ sin k:M0>

o . 7 - . . 7 . .
vy = 72—a2usmz(—s1nwzk_lek 'XpsinkM' coskMo —sinw Y, | €7 Xy cos kM’ sin kMo

+ cosw ZZZI " 1Y} cos kM’ cos kMy — cosw ZZ=1 1Y, sin kM’ sin kM())

Grouping the coefficients of the unknowns sin kM’ and cos kM, one writes :

v = M+ ZZ=1 sin kM'e*~'aypsing (— sinw Xy, cos kMo — cosw sin kMp)
+ 22:1 cos kM'eF = ay psini (— sin w X, sin kMo + cos w cos kM)
va = Y2 — 22:1 sin kM'e*aapsini (— sinw Xy cos kMo — cos w sin kMp)

— 22:1 cos kM'e*aspusin i (— sinwXy, sin kMy + cos w cos kM)

Adopting
S,ij) = —uek_laj sin ¢ (sinw Xy, cos kMo + coswYy, sin kM)
C,i” = —&—,uekilaj sin i (— sin w Xy sin kMo + coswYy, cos kM)

the system B18 takes a much shortened appearance:

{ v o= M+ 22:1 S,(cl) sin kM’ + 22:1 C’,(cl) cos kM’
V2

Yo — 22:1 S,(f) sin kM’ + ZZZI C’,(CZ) cos kM’
Before transforming the SB2 system into a fake but equivalent SB1 system, it is useful to note that

1 2 1 2
s _s) Al _ o

al as al az

(B14)

(B15)
(B16)

(B17)

(B18)

(B19)
(B20)

(B21)

(B22)

Let us note by an asterisk (*) the parameters relative to the fake SB1 system. Using the transformations given by Egs. 9

applied to the system B18, one can write :
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-1 = e S sinkM 37 ctV cos kM’
= noriowedem 22:1 Slil) sin kM’ + 22:1 C,il) coskM’

1—c

= =y gy 22:1 S/(ql) sin kM’ + 22:1 Cél) coskM’

1—c
V2 — l1—c = V2 lﬁc - 22:1 SIEZ) sin k:M/ + ZZ:I CI(CQ) cos le
—  d2—cya—7veteyi ZZ:I S}(CQ) sin kM’ + 22:1 CIEQ) cos kM’

1—c

= B =30 S sin kM + 30 O cos kM

(B23)

W

v = (Ul — 1fc) V—e=Y=(n—7)+ ZZ=1 V—c (S,il) sin kM’ + C,El) cos kM’)

(B24)
v o= (k) A = =Y =) = Kl oA (S0 sinkM + O cos k)

ﬁ

Wer:

However, from Eqgs. B19 and B20

\/—cS,il) = —,uek_11 / Z—jal sin i (sinw Xy, cos kMo + cos wYy, sin kM) (B25)

= —uekflx/alaz sin i (sin w X4 cos kMo + cos wYy sin kM) (B26)
= —pe®'a" sini (sinwXy cos kMo + coswYj, sin kMp) = Sip (B27)

\/—CC,EI) = +uek_11 / Z—jal sin i (— sin w Xy sin kMo + coswYy, cos kMo) (B28)

= +pe" ' aras sini (— sinwXy, sin kMo + cos wYj, cos kM) (B29)
= 4pela" sini (— sinwXy, sin kMo + cos wYj, cos kMo) = Ci (B30)

where the S;, and Cj} functions are identical to the S,gj ) and C,ij ) except that they concern a system of separation

a* = \/a1az instead of one of separation a;. Similarly :
%S,f) = f,uek_l\/alag sini (sin w X}, cos kMo + coswYy, sin kMp) = Sy, (B31)
—c
1 — *
C® = e aras sini (— sinwXy sin kMo + cos wYy cos kM) = Ci (B32)

Therefore, adopting :

I'= 17_2 (m1—72) (B33)

one can finally achieve :

{ = DX, SisinkM 4 5], i coskat (B34

vy = D=7 SisinkM' -3 CfcoskM’

that forms a linear system of equations with unknowns I', S; and Cj. The coefficient sin kM’ and cos kM’ can indeed be
easily computed from the observations date and a first guess of the period. System B34 can be rewritten in matrix form :

|
vy 1 sin kM’ cos kM’ I
- |
* . ! ! C}:
Vs —1 —sinkM’ —coskM

The above matrix is of dimension 2N x (2k+ 1) where N is the number of (v1,v2) measurements and & is the number of terms
adopted in the harmonic analysis. Here we have presented the harmonic development with k = 7, however, in practice, it is
often reasonable to limit the analysis to & = 3. One can now solve the system B35 and recover the values of the unknowns T,
Sy and Cj}. From the latter values, one has then to extract the information on the fake SB1 system. This is adressed in the

next section.
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B2 The approximate SB1 solution

To derived the orbital parameters of the fake SB1 solution, we can proceed exactly as explained by WHS67. The demonstration
is provided here for the sake of completeness, although it is identical to the one presented by WHS67. However, one should
keep in mind that the signification of the symbols used are different. Let us define:

by cos f1 = Y1 cosw ba cos B2 = Ya cosw
b1 sin %1 = X1 sinw bg*sin B2 :*X'g si.nw (B36)
a1 = Mo + (1 Al = bjpua”sini
as = 2My + (2 A5 = byua*esini
Since X1, X2, Y7 and Y> are positive, by, b2, A7 and A3 can also be chosen positive. One thus obtains :
ST = —a"bipusini (sin 31 cos Mo + cos 31 sin Mp)
= —Alsin(B1 + Mp)
= —Aisina (B37)
S5 = —a"bsepsinisin (B2 + 2Mo)
— A5 sin as (B38)
C{ = a"biusini(—sin B sin My + cos 31 cos M)
= Ajcos(B1 + M)
A7 cos an (B39)
C5 = a"baeusinicos (B2 +2My)
= Ajcosas (B40)
Hence :
tanas = —8i/Cf (AD)° = (CD)”+(S1)° (B41)
tanay = —S53/C3 (A3)° = (C3)"+(83)

which yields A}, A3, a1 and az. The quantities by, b2, 81 and (2 are computed by iteration, beginning with the following
initial value for w and e:

W =920 —a; and @ = A5 /A7 (B42)
The preliminary bgo), béo), io) and Bé(]) are computed from :
2 2
bgo) = (}/1(())) cos® w® + (Xfo)> sin? w® (B43)
2 2
bgo) = (}/2(0)) cos® w® + (X§0)> sin? w® (B44)
tan ﬁf)) = X{O) tan w(o)/Yl(O) (B45)
tan ﬁéo) = X2(0> tan w<0)/Y2(0) (B46)
The improved value w™® and e are then found from :
w(1> = 2041 — Q2 — 2 (ﬂim — w(o)) + (5;0) — w(0)> (B47)
(0) 4
L blo Az (B48)
Sk

The process can be repeated starting from w® and e until the final values of w, e, b1, ba, 81 and (2 are found. The physical
parameters of the SB1 system can then be computed thanks to :

A

a"sini = B49
b1,u ( )
My = ax—oa1+p01—p (B50)
T = ty— Mo (B51)
I
K = Halsini A7 (B52)

V1—e2 N biv1 — €2
According to WHS67, “the method is very accurate for small eccentricities, but can be used for moderate and high eccentricities
provided that the series B4 and B6 are carried further than just k = 2. Hence, more unknowns than just I, S1, S2, C1 and C2
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are involved. The only reason for including more terms is to obtain more accurate values for the first five. For eccentricities
greater than about 0.6, the series Bj and B6 diverge. The problem is that the elements are being determined from a set of
converging coefficient by a method using diverging series. It was found that reasonable values of the elements could be obtained

from eccentricities as high as 0.83 solving for five or sixz S’s and C’s. Although the accuracy of such results are difficult to
judge, these elements can nevertheless be used as the basis for a differential correction”.

B3 The differential correction

The previous stage yields approximate values for the parameters e, w, Tp, I' and K of the fake SB1 system. For moderate

or high eccentricity, it is necessary to apply a differential correction (D.C.) to improve the preliminary orbit. At this stage,

the orbital period P (or more precisely u = 2w/P) can also be adjusted. The radial velocity equation of the SB1 system

considered here can be written:

v" =4 + K (ecosw + cos(w + 0)) (B53)

where the (+) correspond to the primary transformed velocities and the (—) to the secondary ones. This equation hides five

independent variables: T', K, w, e, u and Tp. Let us derive v* with respect to each of them:

ov”
or
o™
oK
ov”
ow
o™
Ou

ov*

ov*
de

= 41 (B54)
= = (ecosw + cos(w + 0)) (B55)
= FK(esinw + sin(w + 6)) (B56)
. df dE d¢
- dE dé dp B
:!:’CSIH(W+9)dE 4 dyi (B57)
, 0 l+e, E do /1+e cos?0/2 [1+e 1-—e
S - = — —_— = = B
simee tanQ l—etan 2’ dE 1—ecos? E/2 l—el—ecoskE (B58)
since ¢=FE —esinkE, % =(1-ecosE)"" (B59)
. d¢
since ¢ =p(t—"T), i (t —To) (B60)

. I+e 1-—e t—To
) 9 B61
FLsin(w + )\/:1_ecosE1—ecosE (B61)

K sin(w 4+ 6)y/1 = &2 (T — 1) (LEecos0)’ (B62)

(1-e)?
+Ksin(w + 0) (1 4 ecos 6)® (1 - 62)_3/2 (B63)
= =K (cosw —sin(w + 0)%) (B64)

i 0 1+e E g 1 1+e\ Y21—e+1+4e E l1+e 1 dE
3 tan — = tan — - = tan — it B65
THEE R TN T ™Y decos2 !l (l—e) G—e? ™3V i comZde B9

1—e 2 E [1+e 1 dE
_ tan — - B66
1+6(176)2 an2+ 1760052% de ( )

since ¢ =F —esinkE, %zOz%—sinE—ecosE% (B67)
e (o8
20 0 29 .

R Rt e S e won
- 1811122 1 j:;ncst (B70)
= 1si_nz2 (1—|— i:zz (1—|—ecos€)) (B71)
- ISi_nzZ (2 + ecos) (B72)
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a; = K (cosw - (1 —62)_lsin€sin(0—|—w) (2+ecos€)) (B73)
e
ov* do dE d¢
a0 ~ TNaEdg aty (B74)
: d¢ _
since = W (B75)
ov* . 1+e 1—e
370 +sin(w + 0)4/ 176(176COSE)2'U/ (B76)
= 4K (1 - ez)_3/2 sin(w + ) (1 + ecos )? (B77)
Hence one can write the linear equation system :
\ | | | \ | | AT
(O = Ci)rx a(k)  qk)  gk)  qa(k)  gs(k)  qe(k) ALK
| | | | | Ae
_ B78
| ] Aw (o7
(O — Cr)s —q1(k) —q@2(k) —q3(k) —qa(k) —gs5(k) —qs(k) ATy
\ | | | \ | | Ap
with
ak) = 1 (B79)
¢2(k) = ecosw + cos(w + 6k) (B80)
gs(k) = K (cosw — sin @ sin(w + ek)QJrleicoij) (B81)
—e
qa(k) = —K(esinw + sin(w + 6i)) (B82)
2 sin(w + 6k)
sin(w + 6 .
g(k) = K(1+ecosy)? ﬁ (To — hidy) (B84)

that can be solved thanks to a linear least-square technique. This yields the corrections AT, AK, Ae, Aw, ATy and even-
tually Ap to be added to the previous determination of the orbital parameters. One can proceed recursively until sufficient
convergence is reached. The errors on the orbital elements are simply the errors on the last step of the D.C. . This yields the
final orbital solution for the fake SB1 system.

B4 From the fake SB1 system to the real SB2 system

The parameters of the fake SB1 system obtained through the modified WHS67 method are I', K, e, w, Ty and, eventually a
new value for y = 27/P. An estimation of their 1-o uncertainties is also obtained. Hence it is a simple exercise to derive the
parameters of the real SB2 system and of the associate uncertainties.

B4.1 The common parameters

Both the fake SB1 and the real SB2 system are characterized by the same eccentricity, periastron longitude and time of
periastron passage so that the values of e, w, Ty (as well as of o, 0., and op,) can be directly taken from the fake SB1
solution. The period P is obtained from P = 27/ while the associated error is given by

op = EJ” (B85)

B4.2 The systemic velocities

From the Egs. 9, one easily finds that :

r b
Y= \/jc -+ 1—¢ (B86)
b
Y2 = —V —cI + 71 s (887)

The errors are computed using the theory of error propagation:
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Ovi2 1 oy _ 1 Ov2 _ _\/fc
ob T 1—c ar — J—c T =
91 r 4 b oy2 _ L, b (B8s)
dc T 2(—c)3/2 (1—c)? dc T 2y/—c (1—c)?
Hence
2
2 1 2 05 r b 2
o = —or+ + + o. B89
Y1 P T (1 _ C)2 2 (—6)3/2 (1 _ 6)2 ( )
9 2
2 2 gy T b 2
o = —cop+ + + o B90
” fa=ep (w—c (1 c>2> (50
B4.8 The semi-amplitudes of the RV curves
K o= & (BO1)

Ky = Kv-c (B92)

oK oK
K= \/%7 e = V¢
oK, _ K oKy _ K (B93)
dc T 2(—c¢)—3/2 dc 2/ —c
2 2
2 I K 2
= X B94
0K, P + 1 (—6)3 Oc ( )
2
Uf(Q = —cop+ 1= EC_C) ol (B95)

Note also that

2 1 2 S 0?@
= ——— (= - = B
0K, (—0)2 ( Co + 4 (70) Oc 2 ( 96)

As ¢ = K5 /K, one obtains the previously announced results:

2 2
Ty _ ks (B97)

K Ko

Bj4.4 Other interesting parameters

e a1sint and as sin<

Kiv1—e? (/C/\/TC) V1 —e?

aisini = = (B98)
n n
Qajsini _ _ e D dajsini __ ajsini dajsini __ ajsini
de = T1_ez@smi dc - —2c oK - K (ng)
2 2
2 € 2 oF7¢ .2
Taysini = | =30 + 5= | (arsini) (B100)
(1 — € ) 1

Similarly for as sini =

2
€ 0K .
0'22 cini = ((1 — 62)205 + K222> (CLQ s1nz)2 (BlOl)

N2
If 11 has been included in the D.C., one can have to add an additional contribution to the above error estimate: (%aj sin z) .

e M;jsin®i and Mssin®i

. 3. P 3/2 1\? P a2 K3 2
Misin®i= —K3(1-¢° (1—7) =—(1-¢° -1 B102
Lt oG 2( e) c 27rG( 6) ch(c ) (B102)
. 3. P 3 2\3/2 1 2 _ P 2\3/2 ’Cd 2
MQ sm 7 = %Kl (1 — € ) (1 — E) = % (1 — € ) (_6)3/2 (C — 1) (B103)
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OMj sin® i _ 3 . OM; sin® i 3 .. 3. OM; sin® i _ 3e 3.
lé)c - ( 12c 1) Ml sin” ¢ {WC - EMj sin -2 ]Be T 1—e2 J (B104)
OMysin®i _ M oM, sin®i _ M;sin®i
e = (% ) 2 SlIl 7 Em = m
2 90,2( 9620'5 ( 1 2 )2 L 342
3 = —_— —_— M B1
Oy sin i ( K2 * (1—e2)? * —2c + c—1 ( s Z) (B105)
5 902 9e202 2 \?2 2
O My sin3 i = (}(:2 + ﬁ + ( 1) MQ sin Z) (Bl()ﬁ)
. M, sin® i 2
plus, eventually, the period term: Ou
RRL 1 RRL 2
al+taz aitaz
Let us write g1 = —c and g2 = —1/c, hence 04, = 0. and 0,4, = 0./c?. Using Eggleton (1983), one can write :
Rriai o _ 0-49(1f/3 (B107)
a1 + as 0. 6q2/3 1 (1 n q1/3)
Rrno _ 0.49¢;"° (B108)
a1 taz 6q2/3 T (1 n q1/3>
The respective error are given by :
1
() ()
JRRL,j = ﬁ s ) qu (B109)
a1 tag (0 6¢2/3 + In (1_|_q / ))
° fmass,l and fmass,2
P 3/2 .3
fmass,j - 27’I'G (1 - ) K] (Bllo)
P 3/2 .3 3/2
fmasi = 5= (1—=e*)"" K (=)~ (B111)
P 3/2 .3 3/2
fmass,Q - R (1 ) K ( ) (B112)
3fm;1;SJ _ f!n;sa_] afnal}acss.j _ SfmIaCss,j
Ofmassj _ gfmassi Ofmass _ 3 Fmass.] (B113)
de - 1—e2 dc - 2 (=1)Jc
2 2 2 2
2 _(op 9e“o; 90% 90?2
O'fmass,j - (P2 + (1 — 62) K2 4c2 ) fmassj (B114)

where the period term should only be included if this parameter is improved by the D.C. .

APPENDIX C: A SYNOPSIS OF THE CODE
The code to derive the eccentric SB2 orbital solution is structured in several important subroutines. These are :

- READDATA : reads the input data file,

- ORBIT : computes the SB2 eccentric orbital solution,

- MODEL : computes the phase for each measurements as well as the O — C deviation and the final x? corresponding to
the best fit solution derived in ORBIT,

- VELCURVE : computes the best fit RV-curves according to the best fit solutions found in ORBIT.

The ORBIT subroutine is itself structured in various elements :

MASSRATIO : for SB2 systems, performs the orthogonal regression and builds the fake SB1 system,
- INIT : builds the linear system B35 to be inverted,
- APPROXEL : computes the approximate orbital solution,
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- DC : given a criterion, performs the D.C. recursively until convergence is reached, then computes the improved orbital
elements of the handled SB1 system,
- FINALEL : derives the final SB2 parameters from the fake SB1 final solution.

C1 Reading the input file and input parameters

The following parameters are necessary inputs. They are read either from the main program or from the READDATA routine.
iswl  Allows for an adjustment of the period 7 (yes=1)
isw2 In the case no D.C. is needed, forced it anyway ? (yes=1)
isw4d  Number of indirect (or additional) parameters to be considered in the fit ?
mlabel Maximum number of D.C. steps
m  Number of coefficient in the harmonic analysis
id Object name
P Initial guess for the orbital period
hjdl  Approximate epoch near which Ty will be computed
S  §=0y/0s = 0vy/0v, : ratio of the secondary to primary uncertainties
np  Number of couples (vi,v2)
(hjd,vp, wtp,vs, wts) X Julian date, v1 and weight , v2 and weight

C2 Building the fake SB1 system: MASSRATIO

The routine is performed for SB2 system only. It first selects all the points for which wtp(k) = wts(k) in the data list and
passes them to the orthogonal regression routine. Let us assume that there are neg such couple (v1, v2)x. The points for which
wip(k) # wts(k) are not considered in the orthogonal regression (QUESTION: Should we also reject all points with a null
weight?).

C2.1 The orthogonal regression by itself

Let us note in this section wy = wtp(k) = wts(k). The weight are first normalized so that Z"e“ Wk = Neft-

p o= (Sy—5.)" +4s°C2, (C1)
(Sy —s°S:) + /P
1= = 2
sql =c o (C2)
sQ2=b = yY—cx (C3)
Sy + s2S,
_ C4
d C3y (©4)
2
o2 = Xelr (C5)
Neff
2
2 Xv (.2 2 22
o, = . (s +c 4+ f) (Ce)
2
2 neﬂX
y = /= C7
X (et — zk v (c7)
2 _ Yk — CTk — b)
X = Z Wk e T (C8)
The code also computes the linear correlation coefficient
Cry
"7 5.8, (C9)

C2.2 An absolute scale for the weights

From here all the data points are again considered, even those with witp(k) # wts(k). We now use the best fit relation to
bring the weight to an absolute scale:

I, (C10)
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wip(k) = wtgk) (C11)
wts(k) = wtjgk)/f (C12)

so that oip(k) = 1/wtp(k) and ags(k) = 1/wts(k)

C2.3 Initialization of the fake SB1 system

Let us write n = 2np. The transformation of the SB2 velocities into equivalent SB1* velocities yields, for k = 1..n/2 :

vi(k) = (vl(k)— lfc)ﬁ (C13)
e I e I (1)
For k= (n/2+1)..n:

vik) = (vz(z) - &) ¢1_7 with 1=k —n/2 (C15)

(wE)” = 2= et (”*Q(Ck) - ﬁ(i _C)2> o2 (C16)

QUESTION: Should wee account for o. and o, while converting v1 and v2 into v* (as done here above). If not, then the
previous equations can be rewritten :

(w*(k)™" = —cob gy for k=1.n/2 (C17)
2
W (k)" = —% for k= (n/2+1).m and l=Fk—n/2 (C18)

so that no absolute scaling (Sect. C2.2) needs to be defined. Hence, one could simply use :

w(k) — %&k’) for  k=1.1n/2 (C19)
w*(k) = —cuwts(l)/s* for k= (n/2+1).m and I=Fk—n/2 (C20)

C3 Initializing the Wilsing-Russell method: INIT

The weights are first renormalized accounting this time for all the (transformed) RVs, so that Ziipl wt(k) = 2np = n. Then,

from the {v*(k),w"(k)}, k = 1...n, one constructs the matrix form of the linear system

| |
v* (k) 1 sinhM'(k) cos hM' (k) r
(s
v* (k) —1 —sinhM'(k) —coshM’(k) Ci

with h = 1...m (m being the number of coefficients in the harmonic analysis). The separation between the upper and lower
part of the matrix happens between the lines np and np + 1. The system is then solved using the Numerical Recipes routine
GAUSSJ. This yields the best fit parameters T', S;;, and Cj};. The code then computes the QUALITY of the least-square fit :

np h=m h=m 2
o= ) wik) (v*(k) ~T =Y sinhM'(k) Si— coshM' (k) c;) (C22)
k=1 h=1 h=1
2np h=m h=m 2
+ > W) (v*(k:) +T+ Y sinhM'(k) S+ Y coshM’ (k) c;;) (C23)
k=np+1 h=1 h=1
Hence
2 X2
v T p— 2m 1) (C24)
2
o= X =x: (C25)

(X ) (1= 255)
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C4 Approximated SB1 orbital elements: APPROXEL

The approximate elements K, e, w and Ty are then estimated from S; and C;, S5 and Cj. If e < 5 1077, the program assumes
a circular orbit (case not checked). If e is larger, the code performs an iterative process to improve e and w (stop criterion:
A%e < 2.5 107*?) following exactly WHS67. Finally, it computes the parameters related to the SB1 system as well as their
errors. The latter are computed by propagation from the diagonal elements of the COVAR matrix properly scales using the
X2 (Eq. C24) of the fit .

A2 =C2+ 57 (C26)
arctan(—S;/C;) if C;>0
tan(—S;/C;) +n if C;<0
0 = T"C an(—S;/Cj) +m Zf J (C27)
z if C;=0and S; <0
3 if C;=0and S; >0

2 2 2 2
Cjo'cj “l‘SjO'Sj

2 _
o4, = e (C28)
Uij - W (C29)
a"sini = ;}—L (C30)
Ty = hjdl— 2= :ﬁl — P (C31)
K = pla sini)/y/1—e2 (C32)
or = % (C33)
o, = 4o, +ol, (C34)
ok = o34, (C35)
Oarsini = O/ (C36)
o2 = oy : Tas (C37)

C5 The differential correction: DC

If both e > 20. and e > 0.03, the program enters a differential correction (D.C.) phase. If the option isw2 = 1 has been
chosen, the D.C. is applied whatever the result of the above criteria. If allows by the user (iswl = 1), the D.C. will also
improve the guess value of the period (more precisely, it will improve u). First the true anomaly 6 corresponding to the
approximate solution is computed for each observation as well as (O — C)r = vi, — vsn(0k). Then the following linear system
is built :

| | | | AT
(O -0y a(k)  g2(k)  a3(k)  qa(k)  gs(k)  ge(R) AK
\ _ | | | Ae
| R T Aw (€59
(O - —qi(k) —q2(k) —gs(k) —qa(k) —as(k) —ge(k) ATo
| | | | Ap
with
qk) = 1 (C39)
g2(k) = ecosw + cos(w + Ok) (C40)
gs(k) = K (Cosw — sin 6 sin(w + Ok)%) (C41)
qa(k) = —K(esinw + sin(w + 6i)) (C42)
gs(k) = Ku(l+ ecosby)? sin(w + k) (C43)

(1 —e2)3/2
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2 sin(w + Ok)

(1—e2)3/2
The separation between the upper and lower part of the matrix occurs again between the lines np and np 4+ 1. The matrix
is inverted by means of the GAUSSJ routine and the differential corrections are found. The quality of the fit is estimated by
the QUALITY?2 routine which computes the individual (O — C);, as well as the merit function :

gs(k) = K(1+ecosby) (To — hjdy) (C44)

k=np
¥ = 3w (0 - Ol — AT — a(K)AK — gs(k)Ae + qa(k)Aw — g5(K) ATy — o) Ap)? (C45)
k=1
k=2np
+ Z wi (0 = C)g, + AT + qo(k)AK + g3 (k) Ae — qu(k) Aw + g5 (k) ATo + g6 (k) Ap)? (C46)
k=np+1

It follows that
o= = X (C47)

where v = N — 6 if the period (actually, p = 27/P) is included in the D.C.; v = N — 5 otherwise (and Ay is then ignored).
The improved parameters I', K, e, w, To and eventually p are simply computed by adding the various corrections found. The
uncertainties on the improved parameters are taken as the square-root of the diagonal elements of the COVAR matrix times
the square root of the x2. The D.C. is performed again and again as long as the maximum number of iterations allowed
(mlabel) has not been reached and as long as the convergence criterion is not matched. The latter requires that A2 > o /9,
where AK is the D.C. step along the /C direction while ox is the uncertainty AK.

C6 Computing the final elements: FINALEL

The FINALEL routine computes the parameters of the true SB2 and their 1-o dispersion. It also computes various interesting
parameters such as the minimal masses and the relative Roche lobe radii. The adopted formula have been previously given
in Sect. B4.

C7 Estimating the quality of the final SB2 system: MODELE

The routine MODELE computes the O — C and the x? with respect to the final SB2 solution:

np
Xp = Z wtp(k) (vp(k) — 1 — K1 (ecosw + cos (w + 601)))? (C48)
k=1
np
2 2
Xs = Z wts(k) (vs(k) — 2 + K2 (ecosw + cos (w + 6k))) (C49)
k=1
X2 = Xpt+Xo (C50)
rips = W (C51)
vsB2 y_, (witpy + wtsy)
2
2 nPXp
r, = —— C52
P T S, wip (C52)
2
2 npXs
2 o= DPXs C53
) Vegl Y, Wisk (C53)

where n = 2np and vsg2 = n—8—isw4 if the period has been adjusted; vsg2 = n—7—isw4 otherwise. Finally, vsg1 = np—6—isw4
if the period has been adjusted; vsg1 = np — 5 — isw4 otherwise. The sv2’s written in the result file correspond this time to X2
(by opposition to x2 for the results of the Wilsing-Russell method and of the D.C.).

C8 Computing the theoretical radial velocity curve(s): VELCURVE

Finally, the VELCURVE routine computes the best fit RV curve(s) for the real SB1 or SB2 system with a step of 0.01 in
phase.

This paper has been typeset from a TpX/ ITEX file prepared by the author.
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