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ABSTRACT

We present a semi-analytical algorithm to derive self-consistent SB2 orbital solutions
for both components of a spectroscopic binary system. The method combines an or-
thogonal regression technique and an adaptation of the Wolfe et al. (1967) code, which
allows to derive SB1 orbital solutions with only a limited a priori assumption on the
period value and none on the other orbital parameters. The present algorithm pre-
serves much of the advantage of the original Wolfe et al. method, in particular no
fastidious exploration of the 8-dimension parameter space is required. As an illustrat-
ing case, the method is applied to the well known HD 152248 O+O colliding wind
binary.

Key words: Binaries: spectroscopic – Stars: fundamental parameters – Methods:
numerical

1 MOTIVATION AND ORIGINAL IDEA

In an eccentric binary, the radial velocity v of a component can be written as a function of the true anomaly θ through the

equation (e.g. Aitken 1935) :

v(θ) = γ + K sin i(cos(ω + θ) + e cos θ) (1)

or similarly

v(θ) = γ + sin i sin ω
d

dt
(r cos θ) + sin i cos ω

d

dt
(r sin θ) (2)

where r is the distance to the center of mass. The other notations used are defined in Table 1.

For an SB1 system, thus for which only the radial velocity (RV) of one component out of the two can be measured, we (i.e.

the Liège team) usually adopt the Wolfe et al. (1967, hereafter WHS67) semi-analytical method. Briefly the method is that

of Wilsing-Russell (Wilsing 1894; Russell 1902), followed by a differential correction (D.C.). From first guess of the period,

the algorithm uses a development of r cos θ and r sin θ in harmonic series of the mean anomaly, that uses Bessel functions of

the eccentricity. The Bessel functions are then developed in asymptotic series of the eccentricity to obtain a set of equations

that linearly depends on parameters Ck’s and Sk’s. These latter are themselves functions of the orbital parameters. Thanks

to the linearity of the system, the Ck’s and Sk’s can be derived by a least square technique. In a second step, the non linear

equations giving the orbital elements as a function of the Ck’s and Sk’s are solved iteratively. For the case of moderate or

large eccentricities, the preliminary orbit so obtained can be improved by means of a D.C. method. At this stage, the period

can also be adjusted.

In an SB2 system, one can write Eq. 1 or Eq. 2 for each of the two components of the system, so that e.g.:{
v1(θ) = γ1 + K1 sin i(cos(ω1 + θ) + e cos θ)

v2(θ) = γ2 + K2 sin i(cos(ω2 + θ) + e cos θ)
(3)
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Table 1. Adopted notations for the orbital parameters of a massive binary system.

Notation Description

P Orbital period

i System inclination
e Orbit eccentricity [0,1]

T0 Time of periastron passage (e 6= 0) or time of primary conjunction (e = 0)

ω Longitude of the periastron (e 6= 0)
K1,2 Radial velocity curve semi-amplitude for component 1, 2

γ1,2 Apparent systemic radial velocity associated with component 1, 2

a1,2 Semi-major axis of the orbit of component 1, 2. We also note a = a1 + a2

M1,2 Mass of component 1, 2

q = M1/M2 Binary component mass ratio

RRL1,2 Roche lobe radius associated with component 1, 2

Because of the coupling between these two equations (through the variables e, ω2 = π+ω1 and P ), the WHS67 method can

not directly be used to provide a common orbital solution. Alternatively one could consider both the primary and secondary

data sets as independent SB1 sets and one could derive a separate solution for both components. However, as seen in Table 2,

this provides two distinct values for the common parameters, i.e. those parameters that induce a coupling between the Eqs. 3.

Of course one could implement appropriate numerical methods to solve non-linear systems of equations. However, to

our knowledge, these methods rely on an accurate first guess of the solution or on complicated parameter space exploration

algorithms (such as the so-called genetic algorithms). The latter can be quite heavy to implement in the present 8-dimension

(P , e, ω, T0, K1, K2, γ1 and γ2) parameter space. One of the advantages of the WHS67 algorithm is, indeed, the fact that no a

priori assumption on the probable location of the exact solution in the parameter space is needed, except for the period (which

can easily be obtained thanks to e.g. a Fourier analysis technique). It is thus efficient in terms of computer resources and it

is robust for a large range of eccentricities (up to e ≈ 0.8 according to WHS67). These characteristics make very attractive

the WHS67 method. In the present work, our aim has been to build an algorithm able to consistently deal with SB2 system

while preserving the advantages of the WHS67 method.

To do so, we adopted the following idea as a guideline. The input SB2 data set is converted into an equivalent SB1 data

set by applying an appropriate transformation on the measured radial velocities. The SB1 set so created is then used as an

input for the WHS67 method. As a last step, the obtained equivalent SB1 solution undergoes an inverse transformation that

finally yields the desired SB2 orbital solution. The sketch of Fig. 1 summarizes the basic reasoning of the proposed method.

The next section describes into more details the transformation adopted.

2 THE TRANSFORMATION IN THE RV SPACE

The transformation from the SB2 to the equivalent SB1 data set relies on the following observation. Given the Eqs. 3 and the

fact that, in a Keplerian binary, ω2 = ω1 + π, one can write:

v1(θ)− γ1

K1
= −v2(θ)− γ2

K2
(4)

or equivalently

v2(θ) = b + cv1(θ) (5)

with b = γ2 − K2
K1

γ1 and c = −K2
K1

. This latter equation is linear in the parameters b and c and, given a set of k = 1...N

observation couples (v1(θk), v2(θk)), the system can be solved using a linear least-square technique. However, by opposition

to the case usually encountered, both variables v1 and v2 are spoiled by errors of similar magnitudes. We therefore apply a

so-called orthogonal linear regression, the details of which are discussed in a dedicated section (Sect. 3). For the present time,

let us assume that, given an appropriate technique, the b and c parameters and an estimate of their related errors, can be

determined. At this stage, we note that these parameters already provide valuable information on the physical properties of

the binary system as c = −K2
K1

= −M1
M2

, so that the mass ratio is directly obtained without any a priori assumption on the

system parameters.

At this stage, one could think that our aim has been reached. Indeed according to equation Eq. 5, it is a child game,

knowing the values of b and c, to convert the secondary RVs into equivalent primary velocities. Starting with an SB2 set of

N couples (v1(θk), v2(θk))k=N
k=1 , we result with an SB1 set containing 2N velocity points: the N primary RV measurements
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Figure 1. Sketch of the underlying idea for adapting the WHS67 method to SB2 system.

and N points resulting from the conversion of the secondary RVs to equivalent primary data points. As schematized in Fig.

1, this equivalent SB1 set can now be used as an input of the WHS67 algorithm. This provides the orbital elements for, in the

considered case, the primary component: e, ω, T0, K1 and γ1 as well as their respective errors. We then apply the “inverse”

transformation to derive the remaining secondary parameters K2 and γ2 from the expressions of b and c. Error estimates follow

from the error propagation theory. As an illustrating case, Table 2 presents to orbital solution of the HD 152248 binary (using

the data set of Sana et al. 2001) that was computed using the here described method (column: v2 → v1). It also illustrates one

of the drawback of this way of converting the SB2 data into an equivalent SB1 set. HD 152248 is a binary with two almost

identical components. The strengths of their spectral lines are thus very similar and their RVs are measured with a similar

accuracy. However, as seen from Table 2, the orbital elements associated with the primary are much better constrained than

those associated with the secondary. This results from the additional conversion applied to recover the secondary parameters

once the primary solution has been obtained. This unfortunately yields an additional propagation of the errors, leading larger

estimates for the secondary parameter uncertainties. Proceeding in the opposite way (i.e. converting the primary velocities

into equivalent secondary ones, computing the secondary orbital solution and finally deriving the remaining elements for

the primary) yields the symmetric situation. The secondary parameters are now much better constrained compared to the

primary ones (see Table 2, column v1 → v2). Note that this problem only concerns the error estimates. The values of the

orbital parameters are of course not affected.

To circumvent this drawback, we propose now an alternative approach which, in some way, arrange things so that both

components “meet halfway”. Rather than transforming the RVs of one component into equivalent RVs of the other component,

while the actual measurements of the RVs associated to the later components remain unchanged, we now propose to transform

both components velocities, in order to create a fake SB1 data set that is equivalent to the SB2 system. The orbital solution

of this equivalent SB1 system can be obtained through a modified version of the WHS67 algorithm1 and allows, in a last step,

to deduce the true SB2 solution. This equivalent SB1 system will be noted by an asterisk (∗) in the following and is described

by the equation :

v∗(θ) = Γ +K sin i(cos(ω + θ) + e cos θ). (6)

It has the same eccentricity e, the same longitude of periastron ω and the same time of periastron passage T0 than the real

SB2 system. In Eq. 6, Γ and K are the systemic velocity and the semi-amplitude of the RV curve of the fake SB1 system.

They respectively correspond to the difference between the systemic velocities of the two components of the real SB2 system

and to the geometric average of their RV curve semi-amplitudes :

Γ = γ1 − γ2 (7)

K =
√

K1K2 (8)

The corresponding velocity transformation is given by :{
v∗1 =

√
−c
(
v1 − b

1−c

)
v∗2 = 1√

−c

(
v2 − b

1−c

) (9)

The two components are now symmetrically handled. When computing the primary and secondary RV curve semi-amplitudes

and their related errors from Eq. 8, one can show that :
σK1
K1

=
σK2
K2

. The relative errors on the primary and secondary RV-

curve semi-amplitudes are now equal and the previous asymmetric situation is avoided. Physically speaking, for a system with

two identical components such as HD 152248, the parameters specific to the individual components will now be determined

with the same accuracy. In the case of two different stars in a binary system, their respective RV-curve semi-amplitude will

be measured with a relative accuracy related to their mass-ratio:
σK2
σK1

= K2
K1

= M1
M2

. Though it can not be appropriate for all

binary systems, it has been successfully apply to various SB2 massive binaries.

1 Actually, the WHS67 algorithma had to be slightly updated because of the sign difference between the primary and secondary RV

equations. This results from the fact that ω2 = ω1 + π (see e.g. Eqs. 3).
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Table 2. Orbital and physical parameters of the HD 152248 binary computed using various techniques. The data were taken from Sana

et al. (2001). The same weights have been given to the primary and secondary points. The notations of Table 1 have been used. The
period has been kept constant to render a direct comparison more easy. x→ y has the meaning of ‘conversion from x to y’.

Individual solutions Common solutions

v1 v2 v2 → v1 v1 → v2
v1

v2

}
→ v∗

P (d) 5.816005 5.816005 5.816005 5.816005 5.816005

sy/sx n.a. n.a. 1.0 1.0 1.0
m1/m2 n.a. n.a. 0.989 ± 0.011 0.989 ± 0.011 0.989 ± 0.011

e 0.133 ± 0.006 0.134 ± 0.007 0.134 ± 0.006 0.134 ± 0.006 0.134 ± 0.005

ω1 (◦) 80.6 ± 4.2 85.622 ± 4.8 83.2 ± 4.2 83.2 ± 4.2 83.1 ± 3.2
T0 (HJD 2003.827 2003.863 2003.846 2003.846 2003.846

−2 450 000) ± 0.064 ± 0.073 ± 0.064 ± 0.064 ± 0.050

K1 (km s−1) 216.6 ± 1.2 n.a. 216.7 ± 1.3 216.7 ± 4.2 216.7 ± 1.5
K2 (km s−1) n.a. 214.3 ± 1.5 214.2 ± 4.2 214.2 ± 1.3 214.2 ± 1.5

γ1 (km s−1) -0.3 ± 1.4 n.a. 0.7 ± 1.4 0.7 ± 3.4 0.7 ± 1.5

γ2 (km s−1) n.a. -0.6 ± 1.6 0.4 ± 3.4 0.4 ± 1.4 0.4 ± 1.5
r.m.s. (km s−1) 7.0 8.2 8.0 8.0 8.0

3 THE ORTHOGONAL LINEAR REGRESSION

This section summarizes the main properties of the orthogonal linear regression technique applied to fit the v2 vs. v1 relation

(Eq. 5). The detailed calculation are provided in App. A. Let us consider a data set formed by N couples of measurements

(xk, yk) to which one want to fit the linear model y = cx + b. The usual linear least-square technique minimizes the merit

function :

χ2 =

N∑
k=1

∆2
k, with ∆k = yk − cxk − b, (10)

eventually taking into account various weights or error estimates for the measurements. Eq. 10 actually minimizes the sum

of the square deviations (∆k) to the best fit model, these deviations being measured along the y-axis. This is an intuitive

approach when σy >> σx. Alternatively, when σy << σx, one could use ∆k = xk − yk+b
c

(as long as c 6= 0). However, when

the two variables have uncertainties of the same order of magnitude, one may rather prefer to measure the ∆k’s along a

direction which is orthogonal to the best fit model rather than along one given axis or along the other. This approach falls

under the generic terms of “orthogonal linear regression”. When all measurements have the same uncertainties, the latter

principle yields ∆2
k = (yk−cxk−b)2

1+c2
. When dealing with various uncertainties, one can write ∆2

k = (yk−cxk−b)2

σ2
yk

+c2σ2
xk

. When the ratios

of the secondary to primary uncertainties are all equal whatever the considered measurement couple k, this can be rewritten

as: ∆2
k = 1

σ2
x

(yk−cxk−b)2

s2+c2
where s = σy/σx = σyk/σxk ∀k.

The latter situation is often encountered while dealing with SB2 RV measurements. Indeed one can often estimate that,

given the considered stars, the primary RVs are s times more accurate that the secondary ones. However, it is often more

difficult to obtain an accurate estimate of the amplitude of these uncertainties. Experimental scientists have since long been

facing such kind of problems, which they usually circumvent by adopting a proper relative weighting for the measurements

rather than an absolute weighting. In this latter case, the appropriate merit function can be written :

χ2 =

N∑
k=1

wk
(yk − cxk − b)2

s2 + c2
, (11)

where wk is the weight given to the measurements of the couple (xk, yk). The present approach is equivalent to the one that

adopts the primary weight wpk = wk while the secondary ones are given by wsk = wpk/s2. In this configuration, one can

show that the orthogonal least square solution is given by (App. A) :

a = s(F +
√

F 2 + 1), with F =
Sy − s2Sx

2sCxy
(12)

b = y − cx. (13)

In the latter equations, one have used the following notations :
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Sx = x2 − x2 x =

∑N

k=1
wkxk∑N

k=1
wk

x2 =

∑N

k=1
wkx2

k∑N

k=1
wk

Sy = y2 − y2 y =

∑N

k=1
wkyk∑N

k=1
wk

y2 =

∑N

k=1
wky2

k∑N

k=1
wk

Cxy = xy − x y xy =

∑N

k=1
wkxkyk∑N

k=1
wk

(14)

Under these hypotheses and notations, it is possible to show that the theory of error propagation yields an analytical

expressions for the related uncertainties :

σ2
c =

χ2
ν

N
c2F (15)

σ2
b =

χ2
ν

N
(s2 + c2 + c2x2F) (16)

where

F =
Sy + s2Sx

C2
xy

and χ2
ν =

Nχ2

(N − 2)
∑N

k=1
wk

. (17)

4 FINAL REMARK

The present method requires a preliminary guess of the orbital method as well as an estimate of the ratio s between the

secondary and primary uncertainties. While the first can be obtained through e.g. a Fourier analysis, the latter might be

more difficult to accurately estimate. The present method can provide an original way to circumvent this problem. Indeed the

method is based on the construction of a fake SB1 data set that is equivalent to the SB2 physical system. The construction

of this fake set relies on the best fit parameters (see Eqs. 12 and 13) of the v2 vs. v1 relation and given. The latter solutions

depend to some extent on the adopted value of s. As a consequence, if the adopted s value does not reflect the true ratio

between the primary and secondary uncertainty, the conversion of the primary and secondary RVs will provide inconsistent

contributions to the fake SB1 system. Thus, the final fit will not be good and large differences between the data and the final

SB2 solution will be observed. Hence, one can naturally use an exploration of the parameter space to estimate the s ratio

while minimizing the square deviations between the observations and the computed SB2 solutions:

χ2
SB2 =

∑k=N

k=1
wpk (vpk − γ1 −K1 (cos (ω + θk) + e cos ω))2 +

∑k=N

k=1
wsk (vsk − γ2 + K2 (cos (ω + θk) + e cos ω))2∑k=N

k=1
wpk +

∑k=N

k=1
wsk

. (18)

As a conclusion and assuming that s is also a free parameter of the model, the method presented here allows to restrict the

exploration of the 9-dimension (actually 8 dimensions + one for s) parameter space to a single direction corresponding to s.

5 SUMMARY

We have shown that, using an appropriate transformation, it is possible to adapt the WHS67 algorithm to derive consistent

orbital solutions for the two parameters of an SB2 system. The propose method relies on a linear orthogonal regression

technique that yields the best fit parameters of the relation v2 = cv1 + b, where c = −K2/K1 = −M1/M2 and b = γ2 + cγ1.

Hence the mass ratio is obtained with no a priori assumption on the system, not even a first guess of the orbital period.

We have shown that, if the ratio of the primary and secondary RV measurements can be taken as constant for all the

measurements, it is possible to derive a simple analytical expression to estimate the uncertainties on the best fit parameters

b and c and, hence, on the system mass-ratio. We outline that the present algorithm presents much of the advantages of the

original WHS67 method. In particular, it only requires a first guess of the orbital period. All the other orbital parameters

are obtained without any a priori assumption on their location in the parameter space. Hence, the method does not need

to explore the 8-dimension parameters and, as such, is pretty efficient in terms of computation time. Finally, as the WHS67

method, the present algorithm is adapted to a wide range of eccentricities although a detailed study of the break up point is

still lacking.
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APPENDIX A: ORTHOGONAL REGRESSION: DETAILED CALCULATIONS

Let the merit function given by Eq. 11 :

χ2 =

N∑
k=1

wk
(yk − cxk − b)2

s2 + c2
(A1)

be minimized with respect to the parameters of the model c and b. We thus set the derivative along b and c equal to zero:

∂χ2

∂b
= − 2

s2 + c2

∑
k

wk (yk − cxk − b) ⇐⇒ b = y − cx (A2)

and

∂χ2

∂c
= − 2c

(s2 + c2)2

∑
k

wk (yk − cxk − b)2 − 2

s2 + c2

∑
k

wkxk (yk − cxk − b) = 0 (A3)

⇐⇒ c
∑

k

wk

(
y2

k + c2x2
k + b2 − 2cxkyk − 2byk + 2cbxk

)
+
(
s2 + c2

)∑
k

wk

(
xkyk − cx2

k − bxk

)
= 0 (A4)

⇐⇒ cy2 + c3x2 + cb2 − 2c2xy − 2cby + 2c2bx +
(
s2 + c2

)
xy −

(
s2 + c2

)
cx2 −

(
s2 + c2

)
bx = 0 (A5)

⇐⇒ cy2 + c
(
y2 − 2cx y + c2x2

)
− c2xy − 2cy2 + 2c2x y + c2x y − c3x2 + s2xy − cs2x2 − s2x y + cs2x2 = 0 (A6)

⇐⇒ c2 (x y − xy) + c
(
y2 − y2 − s2x2 + s2x2

)
+
(
s2xy − s2x y

)
= 0 (A7)

⇐⇒ −c2Cxy + c
(
Sy − s2Sx

)
+ s2Cxy = 0 (A8)

⇐⇒ c =

(
Sy − s2Sx

)
±
√

(Sy − s2Sx)2 + 4Cxys2

2Cxy
(A9)

⇐⇒ c = s
(
F ±

√
F 2 + 1

)
(A10)

with F =
Sy−s2Sx

2sCxy
as given by Eq. 12. One can show that the + solution is indeed associated to a minimum of the χ2

function. Before computing the errors, let us first estimate the partial derivatives of c:

∂c

∂F
= s

(
1 +

1

2

2F√
F 2 + 1

)
= s

√
F 2 + 1 + F√

F 2 + 1
=

c√
F 2 + 1

(A11)

F =
Sy − s2Sx

2sCxy
=

y2 − y2 − s2
(
x2 − x2

)
2s (xy − x y)

(A12)

∂F

∂yk
=

(
2wkyk∑

l
wl

− 2wky∑
l

wl

)
2sCxy −

(
Sy − s2Sx

)
2s

(
wkxk∑

l
wl

− wkx∑
l

wl

)
4s2C2

xy
(A13)

=
wk∑
l
wl

1

2sC2
xy

(
(yk − y) 2Cxy −

(
Sy − s2Sx

)
(xk − x)

)
(A14)

=
wk∑
l
wl

1

sCxy

(
(yk − y)− Sy − s2Sx

2Cxy
(xk − x)

)
(A15)

c© 2002 RAS, MNRAS 000, 1–19
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=
wk∑
l
wl

1

Cxy

(
1

s
(yk − y)− F (xk − x)

)
(A16)

∂F

∂xk
=

−s2

(
2wkxk∑

l
wl

− 2wkx∑
l

wl

)
2sCxy −

(
Sy − s2Sx

)
2s

(
wkyk∑

l
wl

− wky∑
l

wl

)
4s2C2

xy
(A17)

=
wk∑
l
wl

1

Cxy

(
−s (xk − x)− Sy − s2Sx

2sCxy
(yk − y)

)
(A18)

=
wk∑
l
wl

−1

Cxy
(s (xk − x) + F (yk − y)) (A19)

Now let us compute the uncertainty on c by mean of the error propagation theory (see e.g. Bevington 1969). In the

following we note the absolute uncertainty σxk = σ/wk and we assume that the wk have been normalized. Similarly, we

obtained σyk = s2σ/wk. Hence :

σ2
c =

∑
k

((
∂c

∂yk

)2

σ2
yk

+
(

∂c

∂xk

)2

σ2
xk

)
(A20)

= σ2
∑

k

1

wk

(
∂c

∂F

)2
((

∂F

∂xk

)2

+

(
∂F

∂yk

)2

s2

)
(A21)

=
σ2c2

1 + F 2

1

C2
xy

1(∑
l
wl

)2 ∑
k

wk

(
s2 (xk − x)2 + F 2 (yk − y)2 + 2sF (yk − y) (xk − x) (A22)

+s2

(
1

s2
(yk − y)2 + F 2 (xk − x)2 − 2

s
F (yk − y) (xk − x)

))
(A23)

=
σ2c2

1 + F 2

1

C2
xy

1(∑
l
wl

)2 ∑
k

wk

(
(xk − x)2 s2

(
1 + F 2

)
+ (yk − y)2

(
F 2 + 1

))
(A24)

=
σ2c2

C2
xy

1(∑
l
wl

)2
(∑

k

wks2 (xk − x)2 +
∑

k

wk (xy − y)2

)
(A25)

=
σ2c2∑

l
wl

s2Sx + Sy

C2
xy

(A26)

and for b :

∂b

∂yk
=

wk∑
l
wl
− x

∂c

∂yk
(A27)

=
wk∑
l
wl
− x

c√
F 2 + 1

∂F

∂yk
(A28)

=
wk∑
l
wl
− x

c√
F 2 + 1

wk∑
l
wl

1

Cxy

(
1

s
(yk − y)− F (xk − x)

)
(A29)

=
wk∑
l
wl

(
1− cx√

F 2 + 1

1

Cxy

(
1

s
(yk − y)− F (xk − x)

))
(A30)

∂b

∂xk
= − wk∑

l
wl

c− x
∂c

∂xk
(A31)

= − wk∑
l
wl

(
c− cx√

F 2 + 1

1

Cxy
(s (xk − x)− F (yk − y))

)
(A32)

σ2
b = σ2

∑
k

1

wk

((
∂b

∂xk

)2

+

(
∂b

∂yk

)2

s2

)
(A33)

=
σ2(∑
l
wl

)2 ∑
k

wk

(
c2 +

c2x2

C2
xy

1

F 2 + 1
(s (xk − x) + F (yk − y))2 + s2 +

c2x2

C2
xy

s2

F 2 + 1

(
1

s
(yk − y)− F (xk − x)

)2

)
(A34)

=
σ2(∑
l
wl

)2
(∑

k

wk

(
c2 + s2

)
+
∑

k

wk
c2x2

C2
xy

1

F 2 + 1

(
s2 (xk − x)2 + F 2 (yk − y)2 + (yk − y)2 + s2F (xk − x)2

))
(A35)
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=
σ2∑
l
wl

(
c2 + s2 +

c2x2

C2
xy

1∑
l
wl

∑
k

wk

(
s2 (xk − x)2 + (yk − y)2

))
(A36)

=
σ2∑
l
wl

(
c2 + s2 + c2x2 s2Sx + Sy

C2
xy

)
(A37)

Finally, one obtains the absolute magnitude of the errors by estimating σ. To do so, we assume that the deviation between

the data and the model is only due to the measurements uncertainties; then :

σ2 ≈
∑

k
wk (yk − cxk − b)2

(N − 2) (s2 + c2)
=

χ2

N − 2
(A38)

where, as previously, the wk are assumed to be normalized.

APPENDIX B: THE LIÈGE SB2 ORBITAL SOLUTION ALGORITHM: AN EXHAUSTIVE

DERIVATION

This section presents the details of the Liège algorithm used to compute SB2 orbital solution. Let us first write Eq. 2 for each

star :{
v1 (θ) = γ1 + sin i sin ω1

d
dt

(r1 cos θ) + sin i cos ω1
d
dt

(r1 sin θ)

v2 (θ) = γ2 + sin i sin ω2
d
dt

(r2 cos θ) + sin i cos ω2
d
dt

(r2 sin θ)
(B1)

Let us note ω1 = ω and ω2 = ω + π (hence sin ω2 = − sin ω and cos ω2 = − cos ω) and let us adopt the notation M for

the mean anomaly and E for the eccentric anomaly. It is well known that :

M = E − e sin E =
2π

P
(t− T0) = µ (t− T0) (B2)

B1 The harmonic analysis

Following the theory of elliptic motion, let us now rewrite the terms r cos θ and r sin θ using harmonic series of the mean

anomaly (see e.g. Brauwer & Clemance 1961, p. 73):

r

a
cos θ = cos E − e (B3)

=
−3e

2
− 2

∞∑
s=1

1

s
J ′s (se) cos (sM) (B4)

r

a
sin θ =

√
1− e2 sin E (B5)

=
√

1− e2

(
2

e

∞∑
s=1

1

s
Js (se) sin (sM)

)
(B6)

where the Js(x) are the Bessel functions of the first kind and J ′s(x), their first derivatives. In a next step, one develops the

Bessel functions in asymptotic series of the eccentricity. Following Brauwer & Clemance (1961, pp. 79-80), one can write :

r
a

cos θ ≈ − 3
2
e +
(
1− 3

8
e2 + 5

192
e4 − 7

9216
e6
)
cos M +

(
1
2
e− 1

3
e3 + 1

16
e5 − 1

180
e7
)
cos 2M +

(
3
8
e2 − 45

128
e4 + 567

5120
e6
)
cos 3M

+
(

1
3
e3 − 2

5
e5 + 8

45
e7
)
cos 4M +

(
125
384

e4 − 4375
9216

e6
)
cos 5M +

(
27
80

e5 − 81
140

e7
)
cos 6M + 16807

46080
e6 cos 7M

= − 3
2
e + X1 cos M + e

2
X2 cos 2M + e2

3
X3 cos 3M + e3

4
X4 cos 4M + e4

5
X5 cos 5M + e5

6
X6 cos 6M + e6

7
X7 cos 7M

(B7)

r
a

sin θ ≈
(
1− 5

8
e2 + 11

192
e4 − 457

9216
e6
)
sin M +

(
1
2
e− 5

12
e3 + 1

24
e5 − 1

45
e7
)
sin 2M +

(
3
8
e2 − 51

128
e4 + 543

5120
e6
)
sin 3M

+
(

1
3
e3 − 13

30
e5 + 13

72
e7
)
sin 4M +

(
125
384

e4 − 4625
9216

e6
)
sin 5M +

(
27
80

e5 − 135
224

e7
)
sin 6M + 16807

46080
e6 sin 7M

= Y1 sin M + e
2
Y2 sin 2M + e2

3
Y3 sin 3M + e3

4
Y4 sin 4M + e4

5
Y5 sin 5M + e5

6
Y6 sin 6M + e6

7
Y7 sin 7M

(B8)

where the Xs and Ys are defined so that the equation is verified and depend only on e. In the present development, the

harmonic analysis given by Eqs. B4 and B6 have been limited to s = 7, which corresponds to neglect powers of e above the

seventh. Both developments can be rewritten in short by summing on k :

r cos θ = −3

2
e +

7∑
k=1

a
ek−1Xk

k
cos kM (B9)
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r sin θ =

7∑
k=1

a
ek−1Yk

k
sin kM (B10)

The derivatives with respect the time t can now be easily evaluated :

d

dt
(r cos θ) = −aµ

7∑
k=1

ek−1Xk sin kM (B11)

d

dt
(r sin θ) = aµ

7∑
k=1

ek−1Yk cos kM (B12)

so that the system B1 becomes :{
v1 = γ1 + a1µ sin i

(
− sin ω

∑7

k=1
ek−1Xk sin kM + cos ω

∑7

k=1
ek−1Yk cos kM

)
v2 = γ2 − a2µ sin i

(
− sin ω

∑7

k=1
ekXk sin kM + cos ω

∑7

k=1
ekYk cos kM

) (B13)

However the time of periastron passage T0 is not known so that one can not compute M directly from the observations.

Adopting an arbitrary time t0, one can write

M = µ (t− T0) = µ (t− t0) + µ (t0 − T0) = M ′ + M0. (B14)

Since

cos k
(
M ′ + M0

)
= cos kM ′ cos kM0 − sin kM ′ sin kM0 (B15)

sin k
(
M ′ + M0

)
= sin kM ′ cos kM0 + cos kM ′ sin kM0 (B16)

the system B13 becomes :

v1 = γ1 + a1µ sin i

(
− sin ω

∑7

k=1
ek−1Xk sin kM ′ cos kM0 − sin ω

∑7

k=1
ek−1Xk cos kM ′ sin kM0

+ cos ω
∑7

k=1
ek−1Yk cos kM ′ cos kM0 − cos ω

∑7

k=1
ek−1Yk sin kM ′ sin kM0

)
v2 = γ2 − a2µ sin i

(
− sin ω

∑7

k=1
ek−1Xk sin kM ′ cos kM0 − sin ω

∑7

k=1
ek−1Xk cos kM ′ sin kM0

+ cos ω
∑7

k=1
ek−1Yk cos kM ′ cos kM0 − cos ω

∑7

k=1
ek−1Yk sin kM ′ sin kM0

)
(B17)

Grouping the coefficients of the unknowns sin kM ′ and cos kM ′, one writes :
v1 = γ1 +

∑7

k=1
sin kM ′ek−1a1µ sin i (− sin ω Xk cos kM0 − cos ω sin kM0)

+
∑7

k=1
cos kM ′ek−1a1µ sin i (− sin ωXk sin kM0 + cos ω cos kM0)

v2 = γ2 −
∑7

k=1
sin kM ′eka2µ sin i (− sin ω Xk cos kM0 − cos ω sin kM0)

−
∑7

k=1
cos kM ′eka2µ sin i (− sin ωXk sin kM0 + cos ω cos kM0)

(B18)

Adopting

S
(j)
k = −µek−1aj sin i (sin ωXk cos kM0 + cos ωYk sin kM0) (B19)

C
(j)
k = +µek−1aj sin i (− sin ωXk sin kM0 + cos ωYk cos kM0) (B20)

the system B18 takes a much shortened appearance:{
v1 = γ1 +

∑7

k=1
S

(1)
k sin kM ′ +

∑7

k=1
C

(1)
k cos kM ′

v2 = γ2 −
∑7

k=1
S

(2)
k sin kM ′ +

∑7

k=1
C

(2)
k cos kM ′

(B21)

Before transforming the SB2 system into a fake but equivalent SB1 system, it is useful to note that

S
(1)
k

a1
=

S
(2)
k

a2
and

C
(1)
k

a1
=

C
(2)
k

a2
(B22)

Let us note by an asterisk (∗) the parameters relative to the fake SB1 system. Using the transformations given by Eqs. 9

applied to the system B18, one can write :
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10 H. Sana

v1 − b
1−c

= γ1 − b
1−c

+
∑7

k=1
S

(1)
k sin kM ′ +

∑7

k=1
C

(1)
k cos kM ′

= γ1−cγ1−γ2+cγ2
1−c

+
∑7

k=1
S

(1)
k sin kM ′ +

∑7

k=1
C

(1)
k cos kM ′

= γ1−γ2
1−c

+
∑7

k=1
S

(1)
k sin kM ′ +

∑7

k=1
C

(1)
k cos kM ′

v2 − b
1−c

= γ2 − b
1−c

−
∑7

k=1
S

(2)
k sin kM ′ +

∑7

k=1
C

(2)
k cos kM ′

= γ2−cγ2−γ2+cγ1
1−c

−
∑7

k=1
S

(2)
k sin kM ′ +

∑7

k=1
C

(2)
k cos kM ′

= c γ2−γ1
1−c

−
∑7

k=1
S

(2)
k sin kM ′ +

∑7

k=1
C

(2)
k cos kM ′

(B23)

 v∗1 =
(
v1 − b

1−c

)√
−c =

√
−c

1−c
(γ1 − γ2) +

∑7

k=1

√
−c
(
S

(1)
k sin kM ′ + C

(1)
k cos kM ′

)
v∗2 =

(
v2 − b

1−c

)
1√
−c

= −
√
−c

1−c
(γ1 − γ2)−

∑7

k=1
1√
−c

(
S

(2)
k sin kM ′ + C

(2)
k cos kM ′

) (B24)

However, from Eqs. B19 and B20

√
−cS

(1)
k = −µek−1

√
a2

a1
a1 sin i (sin ωXk cos kM0 + cos ωYk sin kM0) (B25)

= −µek−1√a1a2 sin i (sin ωXk cos kM0 + cos ωYk sin kM0) (B26)

= −µek−1a∗ sin i (sin ωXk cos kM0 + cos ωYk sin kM0) = S∗k (B27)

√
−cC

(1)
k = +µek−1

√
a2

a1
a1 sin i (− sin ωXk sin kM0 + cos ωYk cos kM0) (B28)

= +µek−1√a1a2 sin i (− sin ωXk sin kM0 + cos ωYk cos kM0) (B29)

= +µek−1a∗ sin i (− sin ωXk sin kM0 + cos ωYk cos kM0) = C∗
k (B30)

where the S∗k and C∗
k functions are identical to the S

(j)
k and C

(j)
k except that they concern a system of separation

a∗ =
√

a1a2 instead of one of separation aj . Similarly :

1√
−c

S
(2)
k = −µek−1√a1a2 sin i (sin ωXk cos kM0 + cos ωYk sin kM0) = S∗k (B31)

1√
−c

C
(2)
k = +µek−1√a1a2 sin i (− sin ωXk sin kM0 + cos ωYk cos kM0) = C∗

k (B32)

Therefore, adopting :

Γ =

√
−c

1− c
(γ1 − γ2) (B33)

one can finally achieve :{
v∗1 = Γ +

∑7

k=1
S∗k sin kM ′ +

∑7

k=1
C∗

k cos kM ′

v∗2 = −Γ−
∑7

k=1
S∗k sin kM ′ −

∑7

k=1
C∗

k cos kM ′ (B34)

that forms a linear system of equations with unknowns Γ, S∗k and C∗
k . The coefficient sin kM ′ and cos kM ′ can indeed be

easily computed from the observations date and a first guess of the period. System B34 can be rewritten in matrix form :


|

v∗1
|
|

v∗2
|

 =


| | |
1 sin kM ′ cos kM ′

| | |
| | |
−1 − sin kM ′ − cos kM ′

| | |


 Γ

S∗k
C∗

k

 (B35)

The above matrix is of dimension 2N× (2k+1) where N is the number of (v1, v2) measurements and k is the number of terms

adopted in the harmonic analysis. Here we have presented the harmonic development with k = 7, however, in practice, it is

often reasonable to limit the analysis to k = 3. One can now solve the system B35 and recover the values of the unknowns Γ,

S∗k and C∗
k . From the latter values, one has then to extract the information on the fake SB1 system. This is adressed in the

next section.
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B2 The approximate SB1 solution

To derived the orbital parameters of the fake SB1 solution, we can proceed exactly as explained by WHS67. The demonstration

is provided here for the sake of completeness, although it is identical to the one presented by WHS67. However, one should

keep in mind that the signification of the symbols used are different. Let us define:

b1 cos β1 = Y1 cos ω b2 cos β2 = Y2 cos ω

b1 sin β1 = X1 sin ω b2 sin β2 = X2 sin ω

α1 = M0 + β1 A∗
1 = b1µa∗ sin i

α2 = 2M0 + β2 A∗
2 = b2µa∗e sin i

(B36)

Since X1, X2, Y1 and Y2 are positive, b1, b2, A∗
1 and A∗

2 can also be chosen positive. One thus obtains :

S∗1 = −a∗b1µ sin i (sin β1 cos M0 + cos β1 sin M0)

= −A∗
1 sin (β1 + M0)

= −A∗
1 sin α1 (B37)

S∗2 = −a∗b2eµ sin i sin (β2 + 2M0)

= −A∗
2 sin α2 (B38)

C∗
1 = a∗b1µ sin i (− sin β1 sin M0 + cos β1 cos M0)

= A∗
1 cos (β1 + M0)

= A∗
1 cos α1 (B39)

C∗
2 = a∗b2eµ sin i cos (β2 + 2M0)

= A∗
2 cos α2 (B40)

Hence :

tan α1 = −S∗1/C∗
1 (A∗

1)
2 = (C∗

1 )2 + (S∗1 )2

tan α2 = −S∗2/C∗
2 (A∗

2)
2 = (C∗

2 )2 + (S∗2 )2
(B41)

which yields A∗
1, A∗

2, α1 and α2. The quantities b1, b2, β1 and β2 are computed by iteration, beginning with the following

initial value for ω and e:

ω(0) = 2α1 − α2 and e(0) = A∗
2/A

∗
1 (B42)

The preliminary b
(0)
1 , b

(0)
2 , β

(0)
1 and β

(0)
2 are computed from :

b
(0)
1 =

(
Y

(0)
1

)2

cos2 ω(0) +
(
X

(0)
1

)2

sin2 ω(0) (B43)

b
(0)
2 =

(
Y

(0)
2

)2

cos2 ω(0) +
(
X

(0)
2

)2

sin2 ω(0) (B44)

tan β
(0)
1 = X

(0)
1 tan ω(0)/Y

(0)
1 (B45)

tan β
(0)
2 = X

(0)
2 tan ω(0)/Y

(0)
2 (B46)

The improved value ω(1) and e(1) are then found from :

ω(1) = 2α1 − α2 − 2
(
β

(0)
1 − ω(0)

)
+
(
β

(0)
2 − ω(0)

)
(B47)

e(1) =
b
(0)
1 A∗

2

b
(0)
2 A∗

1

(B48)

The process can be repeated starting from ω(1) and e(1) until the final values of ω, e, b1, b2, β1 and β2 are found. The physical

parameters of the SB1 system can then be computed thanks to :

a∗ sin i =
A∗

1

b1µ
(B49)

M0 = α2 − α1 + β1 − β2 (B50)

T0 = t0 −
M0

µ
(B51)

K =
µa∗ sin i√

1− e2
=

A∗
1

b1

√
1− e2

(B52)

According to WHS67, “the method is very accurate for small eccentricities, but can be used for moderate and high eccentricities

provided that the series B4 and B6 are carried further than just k = 2. Hence, more unknowns than just Γ, S1, S2, C1 and C2
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are involved. The only reason for including more terms is to obtain more accurate values for the first five. For eccentricities

greater than about 0.6, the series B4 and B6 diverge. The problem is that the elements are being determined from a set of

converging coefficient by a method using diverging series. It was found that reasonable values of the elements could be obtained

from eccentricities as high as 0.83 solving for five or six S’s and C’s. Although the accuracy of such results are difficult to

judge, these elements can nevertheless be used as the basis for a differential correction”.

B3 The differential correction

The previous stage yields approximate values for the parameters e, ω, T0, Γ and K of the fake SB1 system. For moderate

or high eccentricity, it is necessary to apply a differential correction (D.C.) to improve the preliminary orbit. At this stage,

the orbital period P (or more precisely µ = 2π/P ) can also be adjusted. The radial velocity equation of the SB1 system

considered here can be written:

v∗ = ±Γ±K (e cos ω + cos(ω + θ)) (B53)

where the (+) correspond to the primary transformed velocities and the (−) to the secondary ones. This equation hides five

independent variables: Γ, K, ω, e, µ and T0. Let us derive v∗ with respect to each of them:

∂v∗

∂Γ
= ±1 (B54)

∂v∗

∂K = ± (e cos ω + cos(ω + θ)) (B55)

∂v∗

∂ω
= ∓K (e sin ω + sin(ω + θ)) (B56)

∂v∗

∂µ
= ∓K sin(ω + θ)

dθ

dE

dE

dφ

dφ

dµ
(B57)

since tan
θ

2
=

√
1 + e

1− e
tan

E

2
,

dθ

dE
=

√
1 + e

1− e

cos2 θ/2

cos2 E/2
=

√
1 + e

1− e

1− e

1− e cos E
(B58)

since φ = E − e sin E,
dE

dφ
= (1− e cos E)−1 (B59)

since φ = µ (t− T0) ,
dφ

dµ
= (t− T0) (B60)

∂v∗

∂µ
= ∓K sin(ω + θ)

√
1 + e

1− e

1− e

1− e cos E

t− T0

1− e cos E
(B61)

±K sin(ω + θ)
√

1− e2 (T0 − t)
(1 + e cos θ)2

(1− e2)2
(B62)

±K sin(ω + θ) (1 + e cos θ)2
(
1− e2

)−3/2
(B63)

∂v∗

∂e
= ±K

(
cos ω − sin(ω + θ)

dθ

de

)
(B64)

since tan
θ

2
=

√
1 + e

1− e
tan

E

2
,

dθ

de

1

cos2 θ
2

=
(

1 + e

1− e

)−1/2 1− e + 1 + e

(1− e)2
tan

E

2
+

√
1 + e

1− e

1

cos2 E
2

dE

de
(B65)

=

√
1− e

1 + e

2

(1− e)2
tan

E

2
+

√
1 + e

1− e

1

cos2 E
2

dE

de
(B66)

since φ = E − e sin E,
dφ

de
= 0 =

dE

de
− sin E − e cos E

dE

de
(B67)

dE

de
=

sin E

1− e cos E
(B68)

hence,
dθ

de
=

1− e

1 + e

2 cos2 θ
2

(1− e)2
sin θ

2

cos θ
2

+

√
1 + e

1− e

cos2 θ
2

cos2 E
2

sin E

1− e cos E
(B69)

=
sin θ

1− e2
+

sin θ

1− e cos E
(B70)

=
sin θ

1− e2

(
1 +

1− e2

1− e2
(1 + e cos θ)

)
(B71)

=
sin θ

1− e2
(2 + e cos θ) (B72)
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∂v∗

∂e
= ±K

(
cos ω −

(
1− e2

)−1
sin θ sin(θ + ω) (2 + e cos θ)

)
(B73)

∂v∗

∂T0
= ∓K dθ

dE

dE

dφ

dφ

dT0
(B74)

since
dφ

dT0
= −µ (B75)

∂v∗

∂T0
= ±K sin(ω + θ)

√
1 + e

1− e

1− e

(1− e cos E)2
µ (B76)

= ±K
(
1− e2

)−3/2
sin(ω + θ)µ (1 + e cos θ)2 (B77)

Hence one can write the linear equation system :
|

(Ok − Ck)1∗
|
|

(Ok − Ck)∗2
|

 =


| | | | | |

q1(k) q2(k) q3(k) q4(k) q5(k) q6(k)

| | | | | |
| | |

−q1(k) −q2(k) −q3(k) −q4(k) −q5(k) −q6(k)

| | | | | |




∆Γ

∆K
∆e

∆ω

∆T0

∆µ

 (B78)

with

q1(k) = 1 (B79)

q2(k) = e cos ω + cos(ω + θk) (B80)

q3(k) = K
(
cos ω − sin θk sin(ω + θk)

2 + e cos θk

1− e2

)
(B81)

q4(k) = −K (e sin ω + sin(ω + θk)) (B82)

q5(k) = Kµ (1 + e cos θk)2
sin(ω + θk)

(1− e2)3/2
(B83)

q6(k) = K (1 + e cos θk)2
sin(ω + θk)

(1− e2)3/2
(T0 − hjdk) (B84)

that can be solved thanks to a linear least-square technique. This yields the corrections ∆Γ, ∆K, ∆e, ∆ω, ∆T0 and even-

tually ∆µ to be added to the previous determination of the orbital parameters. One can proceed recursively until sufficient

convergence is reached. The errors on the orbital elements are simply the errors on the last step of the D.C. . This yields the

final orbital solution for the fake SB1 system.

B4 From the fake SB1 system to the real SB2 system

The parameters of the fake SB1 system obtained through the modified WHS67 method are Γ, K, e, ω, T0 and, eventually a

new value for µ = 2π/P . An estimation of their 1-σ uncertainties is also obtained. Hence it is a simple exercise to derive the

parameters of the real SB2 system and of the associate uncertainties.

B4.1 The common parameters

Both the fake SB1 and the real SB2 system are characterized by the same eccentricity, periastron longitude and time of

periastron passage so that the values of e, ω, T0 (as well as of σe, σω and σT0) can be directly taken from the fake SB1

solution. The period P is obtained from P = 2π/µ while the associated error is given by

σP =
2π

µ2
σµ (B85)

B4.2 The systemic velocities

From the Eqs. 9, one easily finds that :

γ1 =
Γ√
−c

+
b

1− c
(B86)

γ2 = −
√
−cΓ +

b

1− c
(B87)

The errors are computed using the theory of error propagation:
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∂γ1,2
∂b

= 1
1−c

∂γ1
∂Γ

= 1√
−c

∂γ2
∂Γ

= −
√
−c

∂γ1
∂c

= Γ

2(−c)3/2 + b
(1−c)2

∂γ2
∂c

= Γ
2
√
−c

+ b
(1−c)2

(B88)

Hence

σ2
γ1 =

1

−c
σ2

Γ +
σ2

b

(1− c)2
+

(
Γ

2 (−c)3/2
+

b

(1− c)2

)2

σ2
c (B89)

σ2
γ2 = −cσ2

Γ +
σ2

b

(1− c)2
+

(
Γ

2
√
−c

+
b

(1− c)2

)2

σ2
c (B90)

B4.3 The semi-amplitudes of the RV curves

K1 =
K√
−c

(B91)

K2 = K
√
−c (B92)

∂K1
∂K = 1√

−c

∂K2
∂K =

√
−c

∂K1
∂c

= K
2(−c)−3/2

∂K2
∂c

= − K
2
√
−c

(B93)

σ2
K1 =

σ2
K
−c

+
K2

4 (−c)3
σ2

c (B94)

σ2
K2 = −cσ2

K +
K2

4 (−c)
σ2

c (B95)

Note also that

σ2
K1 =

1

(−c)2

(
−cσ2

K +
K2

4 (−c)
σ2

c

)
=

σ2
K2

c2
(B96)

As c = K2/K1, one obtains the previously announced results:

σ2
K1

K1
=

σ2
K2

K2
(B97)

B4.4 Other interesting parameters

• a1 sin i and a2 sin i

a1 sin i =
K1

√
1− e2

µ
=

(
K/
√
−c
)√

1− e2

µ
(B98)

∂a1 sin i
∂e

= − e
1−e2 a1 sin i ∂a1 sin i

∂c
= a1 sin i

−2c
∂a1 sin i

∂K = a1 sin i
K (B99)

σ2
a1 sin i =

(
e2

(1− e2)2
σ2

e +
σ2

K1

K2
1

)
(a1 sin i)2 (B100)

Similarly for a2 sin i =
K2

√
1−e2

µ
:

σ2
a2 sin i =

(
e2

(1− e2)2
σ2

e +
σ2

K2

K2
2

)
(a2 sin i)2 (B101)

If µ has been included in the D.C., one can have to add an additional contribution to the above error estimate:
(

σµ

µ
aj sin i

)2
.

• M1 sin3 i and M2 sin3 i

M1 sin3 i =
P

2πG
K3

2

(
1− e2

)3/2
(
1− 1

c

)2

=
P

2πG

(
1− e2

)3/2 K3

√
−c

(c− 1)2 (B102)

M2 sin3 i =
P

2πG
K3

1

(
1− e2

)3/2
(
1− 1

c

)2

=
P

2πG

(
1− e2

)3/2 K3

(−c)3/2
(c− 1)2 (B103)
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∂M1 sin3 i
∂c

=
(

1
−2c

+ 2
c−1

)
M1 sin3 i

∂Mj sin3 i

∂K = 3
KMj sin3 i

∂Mj sin3 i

∂e
= 3e

1−e2 Mj sin3 i
∂M2 sin3 i

∂c
=
(
−3
2c

+ 2
c−1

)
M2 sin3 i

∂Mj sin3 i

∂µ
=

Mj sin3 i

µ

(B104)

σ2
M1 sin3 i =

(
9σ2

K
K2

+
9e2σ2

e

(1− e2)2
+
(

1

−2c
+

2

c− 1

)2
)(

M1 sin3 i
)2

(B105)

σ2
M2 sin3 i =

(
9σ2

K
K2

+
9e2σ2

e

(1− e2)2
+
(−3

2c
+

2

c− 1

)2
)(

M2 sin3 i
)2

(B106)

plus, eventually, the period term:
(

Mj sin3 i

µ
σµ

)2

.

• RRL,1
a1+a2

and
RRL,2
a1+a2

Let us write q1 = −c and q2 = −1/c, hence σq1 = σc and σq2 = σc/c2. Using Eggleton (1983), one can write :

RRL,1

a1 + a2
=

0.49q
2/3
1

0.6q
2/3
1 + ln

(
1 + q

1/3
1

) (B107)

RRL,2

a1 + a2
=

0.49q
2/3
2

0.6q
2/3
2 + ln

(
1 + q

1/3
2

) (B108)

The respective error are given by :

σ RRL,j
a1+a2

=
49

300

|2q
−1/3
j ln

(
1 + q

1/3
j

)
−
(
1 + q

1/3
j

)−1

|(
0.6q2/3 + ln

(
1 + q

1/3
j

))2
σqj (B109)

• fmass,1 and fmass,2

fmass,j =
P

2πG

(
1− e2

)3/2
K3

j (B110)

fmass,1 =
P

2πG

(
1− e2

)3/2K3 (−c)−3/2 (B111)

fmass,2 =
P

2πG

(
1− e2

)3/2K3 (−c)3/2 (B112)

∂fmass,j
∂P

=
fmass,j

P

∂fmass,j
∂K = 3

fmass,j
K

∂fmass,j
∂e

= 3
fmass,j
1−e2

∂fmass,j
∂c

= − 3
2

fmass,j
(−1)jc

(B113)

σ2
fmass,j =

(
σ2

P

P 2
+

9e2σ2
e

(1− e2)
+

9σ2
K

K2
+

9σ2
c

4c2

)
f2
mass,j (B114)

where the period term should only be included if this parameter is improved by the D.C. .

APPENDIX C: A SYNOPSIS OF THE CODE

The code to derive the eccentric SB2 orbital solution is structured in several important subroutines. These are :

- READDATA : reads the input data file,

- ORBIT : computes the SB2 eccentric orbital solution,

- MODEL : computes the phase for each measurements as well as the O − C deviation and the final χ2 corresponding to

the best fit solution derived in ORBIT,

- VELCURVE : computes the best fit RV-curves according to the best fit solutions found in ORBIT.

The ORBIT subroutine is itself structured in various elements :

- MASSRATIO : for SB2 systems, performs the orthogonal regression and builds the fake SB1 system,

- INIT : builds the linear system B35 to be inverted,

- APPROXEL : computes the approximate orbital solution,
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- DC : given a criterion, performs the D.C. recursively until convergence is reached, then computes the improved orbital

elements of the handled SB1 system,

- FINALEL : derives the final SB2 parameters from the fake SB1 final solution.

C1 Reading the input file and input parameters

The following parameters are necessary inputs. They are read either from the main program or from the READDATA routine.
isw1 Allows for an adjustment of the period ? (yes=1)

isw2 In the case no D.C. is needed, forced it anyway ? (yes=1)

isw4 Number of indirect (or additional) parameters to be considered in the fit ?

mlabel Maximum number of D.C. steps

m Number of coefficient in the harmonic analysis

id Object name

P Initial guess for the orbital period

hjdl Approximate epoch near which T0 will be computed

s s = σy/σx = σv2/σv1 : ratio of the secondary to primary uncertainties

np Number of couples (v1, v2)

(hjd, vp, wtp, vs, wts)np
k=1 Julian date, v1 and weight , v2 and weight

C2 Building the fake SB1 system: MASSRATIO

The routine is performed for SB2 system only. It first selects all the points for which wtp(k) = wts(k) in the data list and

passes them to the orthogonal regression routine. Let us assume that there are neff such couple (v1, v2)k. The points for which

wtp(k) 6= wts(k) are not considered in the orthogonal regression (QUESTION: Should we also reject all points with a null

weight?).

C2.1 The orthogonal regression by itself

Let us note in this section wk = wtp(k) = wts(k). The weight are first normalized so that
∑neff

k=1
wk = neff .

ρ =
(
Sy − s2Sx

)2
+ 4s2C2

xy (C1)

sq1 = c =

(
Sy − s2Sx

)
+
√

ρ

2Cxy

(C2)

sq2 = b = y − cx (C3)

F =
Sy + s2Sx

C2
xy

(C4)

σ2
c =

χ2
ν

neff
c2F (C5)

σ2
b =

χ2
ν

neff

(
s2 + c2 + c2x2F

)
(C6)

χ2
ν =

neffχ2

(neff − 2)
∑

k
wk

(C7)

χ2 =
∑

k

wk
(yk − cxk − b)2

s2 + c2
(C8)

The code also computes the linear correlation coefficient

r =
Cxy

SxSy
(C9)

C2.2 An absolute scale for the weights

From here all the data points are again considered, even those with wtp(k) 6= wts(k). We now use the best fit relation to

bring the weight to an absolute scale:

σ2 ≈ χ2
ν (C10)
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wtp(k) =
wtp(k)

σ2
(C11)

wts(k) =
wts(k)

σ2
/s2 (C12)

so that σ2
vp(k) = 1/wtp(k) and σ2

vs(k) = 1/wts(k)

C2.3 Initialization of the fake SB1 system

Let us write n = 2np. The transformation of the SB2 velocities into equivalent SB1∗ velocities yields, for k = 1...n/2 :

v∗(k) =
(
v1(k)− b

1− c

)√
−c (C13)

(w∗(k))
−1

= −cσ2
vp(k) −

c

(1− c)2
σ2

b +

(
v∗(k)

2c
− b

√
−c

(1− c)2

)2

σ2
c (C14)

For k = (n/2 + 1)...n :

v∗(k) =
(
v2(l)−

b

1− c

)
1√
−c

with l = k − n/2 (C15)

(w∗(k))
−1

= −
σ2

vs(l)

c
− σ2

b

c(1− c2)
+

(
v∗(k)

2c
+

b
√
−c (1− c)2

)2

σ2
c (C16)

QUESTION: Should wee account for σc and σb while converting v1 and v2 into v∗ (as done here above). If not, then the

previous equations can be rewritten :

(w∗(k))
−1

= −cσ2
vp(k) for k = 1...n/2 (C17)

(w∗(k))
−1

= −
σ2

vs(l)

c
for k = (n/2 + 1)...n and l = k − n/2 (C18)

so that no absolute scaling (Sect. C2.2) needs to be defined. Hence, one could simply use :

w∗(k) =
wtp(k)

−c
for k = 1...n/2 (C19)

w∗(k) = −c wts(l)/s2 for k = (n/2 + 1)...n and l = k − n/2 (C20)

C3 Initializing the Wilsing-Russell method: INIT

The weights are first renormalized accounting this time for all the (transformed) RVs, so that
∑2np

k=1
wt(k) = 2np = n. Then,

from the {v∗(k), w∗(k)}, k = 1...n, one constructs the matrix form of the linear system
|

v∗(k)

|
|

v∗(k)

|

 =


| | |
1 sin hM ′(k) cos hM ′(k)

| | |
| | |
−1 − sin hM ′(k) − cos hM ′(k)

| | |


 Γ

S∗h
C∗

h

 (C21)

with h = 1...m (m being the number of coefficients in the harmonic analysis). The separation between the upper and lower

part of the matrix happens between the lines np and np + 1. The system is then solved using the Numerical Recipes routine

GAUSSJ. This yields the best fit parameters Γ, S∗k and C∗
k . The code then computes the QUALITY of the least-square fit :

χ2 =

np∑
k=1

w∗(k)

(
v∗(k)− Γ−

h=m∑
h=1

sin hM ′(k) S∗k −
h=m∑
h=1

cos hM ′(k) C∗
h

)2

(C22)

+

2np∑
k=np+1

w∗(k)

(
v∗(k) + Γ +

h=m∑
h=1

sin hM ′(k) S∗h +

h=m∑
h=1

cos hM ′(k) C∗
h

)2

(C23)

Hence

χ2
ν =

χ2

2np− (2m + 1)
(C24)

r2
1 =

χ2(∑
k

wk

) (
1− 2m+1

2np

) = χ2
ν (C25)

c© 2002 RAS, MNRAS 000, 1–19



18 H. Sana

C4 Approximated SB1 orbital elements: APPROXEL

The approximate elements K, e, ω and T0 are then estimated from S∗1 and C∗
1 , S∗2 and C∗

2 . If e 6 5 10−7, the program assumes

a circular orbit (case not checked). If e is larger, the code performs an iterative process to improve e and ω (stop criterion:

∆2e 6 2.5 10−13) following exactly WHS67. Finally, it computes the parameters related to the SB1 system as well as their

errors. The latter are computed by propagation from the diagonal elements of the COVAR matrix properly scales using the

χ2
ν (Eq. C24) of the fit .

A2
j = C2

j + S2
j (C26)

αj =


arctan(−Sj/Cj) if Cj > 0

arctan(−Sj/Cj) + π if Cj < 0
π
2

if Cj = 0 and Sj 6 0
3π
2

if Cj = 0 and Sj > 0

(C27)

σ2
Aj

=
C2

j σ2
Cj

+ S2
j σ2

Sj

A2
j

(C28)

σ2
αj

=
C2

j σ2
Sj

+ S2
j σ2

Cj

A4
j

(C29)

a∗ sin i =
A1

b1µ
(C30)

T0 = hjdl − α2 − α1 + β1 − β2

µ
(C31)

K = µ(a∗ sin i)/
√

1− e2 (C32)

σ2
e =

e2σ2
A1 + σ2

A2

A2
1

(C33)

σ2
ω = 4σ2

α1 + σ2
α2 (C34)

σ2
K = σ2

A1 (C35)

σ2
a∗ sin i = σ2

K/µ2 (C36)

σ2
T0 =

σ2
α1 + σ2

α2

µ
(C37)

C5 The differential correction: DC

If both e > 2σe and e > 0.03, the program enters a differential correction (D.C.) phase. If the option isw2 = 1 has been

chosen, the D.C. is applied whatever the result of the above criteria. If allows by the user (isw1 = 1), the D.C. will also

improve the guess value of the period (more precisely, it will improve µ). First the true anomaly θk corresponding to the

approximate solution is computed for each observation as well as (O − C)k = v∗k − vth(θk). Then the following linear system

is built :


|

(O − C)∗k
|
|

(O − C)∗k
|

 =


| | |

q1(k) q2(k) q3(k) q4(k) q5(k) q6(k)

| | |
| | |

−q1(k) −q2(k) −q3(k) −q4(k) −q5(k) −q6(k)

| | |




∆Γ

∆K
∆e

∆ω

∆T0

∆µ

 (C38)

with

q1(k) = 1 (C39)

q2(k) = e cos ω + cos(ω + θk) (C40)

q3(k) = K
(
cos ω − sin θk sin(ω + θk)

2 + e cos θk

1− e2

)
(C41)

q4(k) = −K (e sin ω + sin(ω + θk)) (C42)

q5(k) = Kµ (1 + e cos θk)2
sin(ω + θk)

(1− e2)3/2
(C43)
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q6(k) = K (1 + e cos θk)2
sin(ω + θk)

(1− e2)3/2
(T0 − hjdk) (C44)

The separation between the upper and lower part of the matrix occurs again between the lines np and np + 1. The matrix

is inverted by means of the GAUSSJ routine and the differential corrections are found. The quality of the fit is estimated by

the QUALITY2 routine which computes the individual (O − C)k as well as the merit function :

χ2 =

k=np∑
k=1

wk ((O − C)k −∆Γ− q2(k)∆K − q3(k)∆e + q4(k)∆ω − q5(k)∆T0 − q6(k)∆µ)2 (C45)

+

k=2np∑
k=np+1

wk ((O − C)k + ∆Γ + q2(k)∆K+ q3(k)∆e− q4(k)∆ω + q5(k)∆T0 + q6(k)∆µ)2 (C46)

It follows that

r2
1 = χ2

ν =
χ2

ν
(C47)

where ν = N − 6 if the period (actually, µ = 2π/P ) is included in the D.C.; ν = N − 5 otherwise (and ∆µ is then ignored).

The improved parameters Γ, K, e, ω, T0 and eventually µ are simply computed by adding the various corrections found. The

uncertainties on the improved parameters are taken as the square-root of the diagonal elements of the COVAR matrix times

the square root of the χ2
ν . The D.C. is performed again and again as long as the maximum number of iterations allowed

(mlabel) has not been reached and as long as the convergence criterion is not matched. The latter requires that ∆2K > σ2
K/9,

where ∆K is the D.C. step along the K direction while σK is the uncertainty ∆K.

C6 Computing the final elements: FINALEL

The FINALEL routine computes the parameters of the true SB2 and their 1-σ dispersion. It also computes various interesting

parameters such as the minimal masses and the relative Roche lobe radii. The adopted formula have been previously given

in Sect. B4.

C7 Estimating the quality of the final SB2 system: MODELE

The routine MODELE computes the O − C and the χ2 with respect to the final SB2 solution:

χ2
p =

np∑
k=1

wtp(k) (vp(k)− γ1 −K1 (e cos ω + cos (ω + θk)))2 (C48)

χ2
s =

np∑
k=1

wts(k) (vs(k)− γ2 + K2 (e cos ω + cos (ω + θk)))2 (C49)

χ2
SB2 = χ2

p + χ2
s (C50)

r2
SB2 =

nχ2
SB2

νSB2

∑
k
(wtpk + wtsk)

(C51)

r2
p =

npχ2
p

νsgl

∑
k

wtpk
(C52)

r2
s =

npχ2
s

νsgl

∑
k

wtsk
(C53)

where n = 2np and νSB2 = n−8−isw4 if the period has been adjusted; νSB2 = n−7−isw4 otherwise. Finally, νsgl = np−6−isw4

if the period has been adjusted; νsgl = np− 5− isw4 otherwise. The sv2’s written in the result file correspond this time to χ2

(by opposition to χ2
ν for the results of the Wilsing-Russell method and of the D.C.).

C8 Computing the theoretical radial velocity curve(s): VELCURVE

Finally, the VELCURVE routine computes the best fit RV curve(s) for the real SB1 or SB2 system with a step of 0.01 in

phase.

This paper has been typeset from a TEX/ LATEX file prepared by the author.
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