Properties of the massive binary population Laurent Mahy - In the Galaxy: - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012) - In the Galaxy: - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012) - In Cyg OB2: - > 55% are binaries (Kobulnicky et al. 2014) - In the Galaxy: - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012) - In Cyg OB2: - > 55% are binaries (Kobulnicky et al. 2014) - In 30 Doradus: - ~ 50% are binaries (Sana et al. 2013) - In the Galaxy: - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012) - In Cyg OB2: - > 55% are binaries (Kobulnicky et al. 2014) - In 30 Doradus: - ~ 50% are binaries (Sana et al. 2013) | NGC 2244 | 7 | 14 % | |---------------|----|------| | NGC 6231 | 16 | 63 % | | NGC 6611 | 9 | 44 % | | IC 2944 | 14 | 53 % | | IC 1805 | 8 | 38 % | | Cyg OB1,3,8,9 | 4 | 21 % | Wide orbit: Both components evolve as single stars Both components evolve as single stars <u>close systems:</u> Effects of the tides Mass transfer Wide orbit: <u>close systems:</u> Both components evolve as single stars Effects of the tides Mass transfer A&A 530, A108 (2011) DOI: 10.1051/0004-6361/201116782 © ESO 2011 #### The VLT-FLAMES Tarantula Survey #### I. Introduction and observational overview* C. J. Evans¹, W. D. Taylor², V. Hénault-Brunet², H. Sana³, A. de Koter^{3,4}, S. Simón-Díaz^{5,6}, G. Carraro⁷, T. Bagnoli³, N. Bastian^{8,9}, J. M. Bestenlehner¹⁰, A. Z. Bonanos¹¹, E. Bressert^{9,12,13}, I. Brott^{4,14}, M. A. Campbell², M. Cantiello¹⁵, J. S. Clark¹⁶, E. Costa¹⁷, P. A. Crowther¹⁸, S. E. de Mink^{19,**}, E. Doran¹⁸, P. L. Dufton²⁰, P. R. Dunstall²⁰, K. Friedrich¹⁵, M. Garcia^{5,6}, M. Gieles²¹, G. Gräfener¹⁰, A. Herrero^{5,6}, I. D. Howarth²², R. G. Izzard¹⁵, N. Langer¹⁵, D. J. Lennon²³, J. Maíz Apellániz^{24,***}, N. Markova²⁵, F. Najarro²⁶, J. Puls²⁷, O. H. Ramirez³, C. Sabín-Sanjulián^{5,6}, S. J. Smartt²⁰, V. E. Stroud^{16,28}, J. Th. van Loon²⁹, J. S. Vink¹⁰, and N. R. Walborn¹⁹ A&A 530, A108 (2011) DOI: 10.1051/0004-6361/201116782 © ESO 2011 #### The VLT-FLAMES Tarantula Survey #### I. Introduction and observational overview* C. J. Evans¹, W. D. Taylor², V. Hénault-Brunet², H. Sana³, A. de Koter^{3,4}, S. Simón-Díaz^{5,6}, G. Carraro⁷, T. Bagnoli³, N. Bastian^{8,9}, J. M. Bestenlehner¹⁰, A. Z. Bonanos¹¹, E. Bressert^{9,12,13}, I. Brott^{4,14}, M. A. Campbell², M. Cantiello¹⁵, J. S. Clark¹⁶, E. Costa¹⁷, P. A. Crowther¹⁸, S. E. de Mink^{19,**}, E. Doran¹⁸, P. L. Dufton²⁰, P. R. Dunstall²⁰, K. Friedrich¹⁵, M. Garcia^{5,6}, M. Gieles²¹, G. Gräfener¹⁰, A. Herrero^{5,6}, I. D. Howarth²², R. G. Izzard¹⁵, N. Langer¹⁵, D. J. Lennon²³, J. Maíz Apellániz^{24,***}, N. Markova²⁵, F. Najarro²⁶, J. Puls²⁷, O. H. Ramirez³, C. Sabín-Sanjulián^{5,6}, S. J. Smartt²⁰, V. E. Stroud^{16,28}, J. Th. van Loon²⁹, J. S. Vink¹⁰, and N. R. Walborn¹⁹ #### The VLT-FLAMES Tarantula Survey.* #### XXIX. Massive star formation in the local 30 Doradus starburst F.R.N. Schneider¹**, O.H. Ramírez-Agudelo², F. Tramper³, J.M. Bestenlehner^{4,5}, N. Castro⁶, H. Sana⁷, C.J. Evans², C. Sabín-Sanjulián⁸, S. Simón-Díaz^{9,10}, N. Langer¹¹, L. Fossati¹², G. Gräfener¹¹, P.A. Crowther⁵, S.E. de Mink¹³, A. de Koter^{13,7}, M. Gieles¹⁴, A. Herrero^{9,10}, R.G. Izzard^{14,15}, V. Kalari¹⁶, R.S. Klessen¹⁷, D.J. Lennon³, L. Mahy⁷, J. Maíz Apellániz¹⁸, N. Markova¹⁹, J.Th. van Loon²⁰, J.S. Vink²¹, and N.R. Walborn²²*** DOI: 10.1051/0004-6361/201116782 © ESO 2011 #### The VIT-FLAMES Tarantula Survey A&A 598, A84 (2017) DOI: 10.1051/0004-6361/201629844 © ESO 2017 #### The Tarantula Massive Binary Monitoring #### I. Observational campaign and OB-type spectroscopic binaries* L. A. Almeida^{1,2}, H. Sana^{3,4}, W. Taylor⁵, R. Barbá⁶, A. Z. Bonanos⁷, P. Crowther⁸, A. Damineli¹, A. de Koter^{9,3}, S. E. de Mink⁹, C. J. Evans⁵, M. Gieles¹⁰, N. J. Grin¹², V. Hénault-Brunet¹¹, N. Langer¹², D. Lennon¹³, S. Lockwood⁴, J. Maíz Apellániz¹⁴, A. F. J. Moffat¹⁵, C. Neijssel⁹, C. Norman², O. H. Ramírez-Agudelo⁵, N. D. Richardson¹⁶, A. Schootemeijer¹², T. Shenar¹⁷, I. Soszyński¹⁸, F. Tramper¹³, and J. S. Vink¹⁹ F.R.N. Schneider¹**, O.H. Ramírez-Agudelo², F. Tramper³, J.M. Bestenlehner^{4,5}, N. Castro⁶, H. Sana⁷, C.J. Evans², C. Sabín-Sanjulián⁸, S. Simón-Díaz^{9,10}, N. Langer¹¹, L. Fossati¹², G. Gräfener¹¹, P.A. Crowther⁵, S.E. de Mink¹³, A. de Koter^{13,7}, M. Gieles¹⁴, A. Herrero^{9,10}, R.G. Izzard^{14,15}, V. Kalari¹⁶, R.S. Klessen¹⁷, D.J. Lennon³, L. Mahy⁷, J. Maíz Apellániz¹⁸, N. Markova¹⁹, J.Th. van Loon²⁰, J.S. Vink²¹, and N.R. Walborn²²*** ### TMBM: - 32 epochs randomly observed - FLAMES spectra: [3950:4560] A [H, He I, He II, C III, N III, Si IV] - > 31 SB2 systems: - * 19 only spectroscopic - * 13 photometric + spectroscopic - 5 showing eclipses - 2 (over-)contact - 6 ellipsoidal var. # **METHODOLOGY:** - Almeida et al. (2017) measured the radial velocities for all the epochs and compute the orbital periods, mass ratios, and eccentricities - Fourier spectral disentangling (Simon & Sturm 1994, Ilijic et al. 2004) - Use the CMFGEN atmosphere code (Hillier & Miller 1998) - Determination of the Teff, log g - ★ Determination of the C and N abundances no O lines - * Hydrogen and Helium lines used to scale the disentangling spectra for non-photometric systems i.e. $I_1+I_2=1$. - Comparaison with BONNSAI (Bayesian tool) for the theoretically predicted values # **METHODOLOGY:** Almeida et al. (2017) measured the radial velocities for all the epochs and compute Comparaison with BONNSAI (Bayesian to values # HERTZSPRUNG-RUSSELL DIAGRAM # **SURFACE ABUNDANCES** # No line to derive the oxygen surface abundance # **SURFACE ABUNDANCES** # No line to derive the oxygen surface abundance - + filling of the Roche lobe - + (Pseudo-) Synchronization - Rotational velocities # **SURFACE ABUNDANCES** # No line to derive the oxygen surface abundance - + filling of the Roche lobe - + (Pseudo-) Synchronization - + Rotational velocities Mahy et al. (in prep.) - Liège has a large expertise in analyzing binaries - Use TIGRE and other facilities to study a large fraction of massive binaries - With TIGRE, monitoring of about 15 massive eclipsing binaries (with O/early B stars) - To constrain the effects of the interactions (rotational mixing, surface abundances, tidal effects...) Pilot study: 6 massive (eclipsing) systems: AH Cep, DH Cep, XZ Cep, V382 Cyg, V478 Cyg, Y Cyg Martins, Mahy, and Hervé (2017) Pilot study: 6 massive (eclipsing) systems: AH Cep, DH Cep, XZ Cep, V382 Cyg, V478 Cyg, Y Cyg The effect of tides on chemical mixing is limited, whereas the mass transfer leads to the appearance of chemically processed material at the surface # THE END ...for this year... # THANK YOU