

Properties of the massive binary population

Laurent Mahy

- In the Galaxy:
 - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012)

- In the Galaxy:
 - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012)
- In Cyg OB2:
 - > 55% are binaries (Kobulnicky et al. 2014)

- In the Galaxy:
 - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012)
- In Cyg OB2:
 - > 55% are binaries (Kobulnicky et al. 2014)
- In 30 Doradus:
 - ~ 50% are binaries (Sana et al. 2013)

- In the Galaxy:
 - > 70% of the massive stars are binaries or multiple systems (Sana et al. 2012)
- In Cyg OB2:
 - > 55% are binaries (Kobulnicky et al. 2014)
- In 30 Doradus:
 - ~ 50% are binaries (Sana et al. 2013)

NGC 2244	7	14 %
NGC 6231	16	63 %
NGC 6611	9	44 %
IC 2944	14	53 %
IC 1805	8	38 %
Cyg OB1,3,8,9	4	21 %

Wide orbit:

Both components evolve as single stars

Both components evolve as single stars

<u>close systems:</u>

Effects of the tides

Mass transfer

Wide orbit:

<u>close systems:</u>

Both components evolve as single stars

Effects of the tides

Mass transfer

A&A 530, A108 (2011)

DOI: 10.1051/0004-6361/201116782

© ESO 2011

The VLT-FLAMES Tarantula Survey

I. Introduction and observational overview*

C. J. Evans¹, W. D. Taylor², V. Hénault-Brunet², H. Sana³, A. de Koter^{3,4}, S. Simón-Díaz^{5,6}, G. Carraro⁷, T. Bagnoli³, N. Bastian^{8,9}, J. M. Bestenlehner¹⁰, A. Z. Bonanos¹¹, E. Bressert^{9,12,13}, I. Brott^{4,14}, M. A. Campbell², M. Cantiello¹⁵, J. S. Clark¹⁶, E. Costa¹⁷, P. A. Crowther¹⁸, S. E. de Mink^{19,**}, E. Doran¹⁸, P. L. Dufton²⁰, P. R. Dunstall²⁰, K. Friedrich¹⁵, M. Garcia^{5,6}, M. Gieles²¹, G. Gräfener¹⁰, A. Herrero^{5,6}, I. D. Howarth²², R. G. Izzard¹⁵, N. Langer¹⁵, D. J. Lennon²³, J. Maíz Apellániz^{24,***}, N. Markova²⁵, F. Najarro²⁶, J. Puls²⁷, O. H. Ramirez³, C. Sabín-Sanjulián^{5,6}, S. J. Smartt²⁰, V. E. Stroud^{16,28}, J. Th. van Loon²⁹, J. S. Vink¹⁰, and N. R. Walborn¹⁹

A&A 530, A108 (2011)

DOI: 10.1051/0004-6361/201116782

© ESO 2011

The VLT-FLAMES Tarantula Survey

I. Introduction and observational overview*

C. J. Evans¹, W. D. Taylor², V. Hénault-Brunet², H. Sana³, A. de Koter^{3,4}, S. Simón-Díaz^{5,6}, G. Carraro⁷, T. Bagnoli³, N. Bastian^{8,9}, J. M. Bestenlehner¹⁰, A. Z. Bonanos¹¹, E. Bressert^{9,12,13}, I. Brott^{4,14},
M. A. Campbell², M. Cantiello¹⁵, J. S. Clark¹⁶, E. Costa¹⁷, P. A. Crowther¹⁸, S. E. de Mink^{19,**}, E. Doran¹⁸, P. L. Dufton²⁰, P. R. Dunstall²⁰, K. Friedrich¹⁵, M. Garcia^{5,6}, M. Gieles²¹, G. Gräfener¹⁰, A. Herrero^{5,6}, I. D. Howarth²², R. G. Izzard¹⁵, N. Langer¹⁵, D. J. Lennon²³, J. Maíz Apellániz^{24,***}, N. Markova²⁵, F. Najarro²⁶, J. Puls²⁷, O. H. Ramirez³, C. Sabín-Sanjulián^{5,6}, S. J. Smartt²⁰, V. E. Stroud^{16,28}, J. Th. van Loon²⁹, J. S. Vink¹⁰, and N. R. Walborn¹⁹

The VLT-FLAMES Tarantula Survey.*

XXIX. Massive star formation in the local 30 Doradus starburst

F.R.N. Schneider¹**, O.H. Ramírez-Agudelo², F. Tramper³, J.M. Bestenlehner^{4,5}, N. Castro⁶, H. Sana⁷, C.J. Evans², C. Sabín-Sanjulián⁸, S. Simón-Díaz^{9,10}, N. Langer¹¹, L. Fossati¹², G. Gräfener¹¹, P.A. Crowther⁵, S.E. de Mink¹³, A. de Koter^{13,7}, M. Gieles¹⁴, A. Herrero^{9,10}, R.G. Izzard^{14,15}, V. Kalari¹⁶, R.S. Klessen¹⁷, D.J. Lennon³, L. Mahy⁷, J. Maíz Apellániz¹⁸, N. Markova¹⁹, J.Th. van Loon²⁰, J.S. Vink²¹, and N.R. Walborn²²***

DOI: 10.1051/0004-6361/201116782

© ESO 2011

The VIT-FLAMES Tarantula Survey

A&A 598, A84 (2017)

DOI: 10.1051/0004-6361/201629844

© ESO 2017

The Tarantula Massive Binary Monitoring

I. Observational campaign and OB-type spectroscopic binaries*

L. A. Almeida^{1,2}, H. Sana^{3,4}, W. Taylor⁵, R. Barbá⁶, A. Z. Bonanos⁷, P. Crowther⁸, A. Damineli¹, A. de Koter^{9,3}, S. E. de Mink⁹, C. J. Evans⁵, M. Gieles¹⁰, N. J. Grin¹², V. Hénault-Brunet¹¹, N. Langer¹², D. Lennon¹³, S. Lockwood⁴, J. Maíz Apellániz¹⁴, A. F. J. Moffat¹⁵, C. Neijssel⁹, C. Norman², O. H. Ramírez-Agudelo⁵, N. D. Richardson¹⁶, A. Schootemeijer¹², T. Shenar¹⁷, I. Soszyński¹⁸, F. Tramper¹³, and J. S. Vink¹⁹

F.R.N. Schneider¹**, O.H. Ramírez-Agudelo², F. Tramper³, J.M. Bestenlehner^{4,5}, N. Castro⁶, H. Sana⁷, C.J. Evans², C. Sabín-Sanjulián⁸, S. Simón-Díaz^{9,10}, N. Langer¹¹, L. Fossati¹², G. Gräfener¹¹, P.A. Crowther⁵, S.E. de Mink¹³, A. de Koter^{13,7}, M. Gieles¹⁴, A. Herrero^{9,10}, R.G. Izzard^{14,15}, V. Kalari¹⁶, R.S. Klessen¹⁷, D.J. Lennon³, L. Mahy⁷, J. Maíz Apellániz¹⁸, N. Markova¹⁹, J.Th. van Loon²⁰, J.S. Vink²¹, and N.R. Walborn²²***

TMBM:

- 32 epochs randomly observed
- FLAMES spectra:

[3950:4560] A

[H, He I, He II, C III, N III, Si IV]

- > 31 SB2 systems:
 - * 19 only spectroscopic
 - * 13 photometric + spectroscopic
 - 5 showing eclipses
 - 2 (over-)contact
 - 6 ellipsoidal var.

METHODOLOGY:

- Almeida et al. (2017) measured the radial velocities for all the epochs and compute the orbital periods, mass ratios, and eccentricities
- Fourier spectral disentangling (Simon & Sturm 1994, Ilijic et al. 2004)
- Use the CMFGEN atmosphere code (Hillier & Miller 1998)
 - Determination of the Teff, log g
 - ★ Determination of the C and N abundances no O lines
 - * Hydrogen and Helium lines used to scale the disentangling spectra for non-photometric systems i.e. $I_1+I_2=1$.
- Comparaison with BONNSAI (Bayesian tool) for the theoretically predicted values

METHODOLOGY:

 Almeida et al. (2017) measured the radial velocities for all the epochs and compute

Comparaison with BONNSAI (Bayesian to values

HERTZSPRUNG-RUSSELL DIAGRAM

SURFACE ABUNDANCES

No line to derive the oxygen surface abundance

SURFACE ABUNDANCES

No line to derive the oxygen surface abundance

- + filling of the Roche lobe
- + (Pseudo-) Synchronization
 - Rotational velocities

SURFACE ABUNDANCES

No line to derive the oxygen surface abundance

- + filling of the Roche lobe
- + (Pseudo-) Synchronization
- + Rotational velocities

Mahy et al. (in prep.)

- Liège has a large expertise in analyzing binaries
- Use TIGRE and other facilities to study a large fraction of massive binaries
- With TIGRE, monitoring of about 15 massive eclipsing binaries (with O/early B stars)
- To constrain the effects of the interactions (rotational mixing, surface abundances, tidal effects...)

Pilot study: 6 massive (eclipsing) systems:

AH Cep, DH Cep, XZ Cep, V382 Cyg, V478 Cyg, Y Cyg

Martins, Mahy, and Hervé (2017)

Pilot study: 6 massive (eclipsing) systems:

AH Cep, DH Cep, XZ Cep, V382 Cyg, V478 Cyg, Y Cyg

The effect of tides on chemical mixing is limited, whereas the mass transfer leads to the appearance of chemically processed material at the surface

THE END

...for this year...

THANK YOU