Can we improve spectral disentangling methods?

Philippe Eenens¹ and Edwin Quintero²

¹Guanajuato, Mexico

²Pereira, Colombia

TOC

TOC of this presentation

- 1. Introduction
- 2. The 'shift and add' method
- 3. Main problem
- 4. Toward a solution
- 5. Future work

Introduction

Introduction

In the observed spectra of binary stars the lines are never completely deblended if:

- the orbital movement is slow (long periods) and
- the lines are broad (massive stars with winds or fast rotators).

Introduction

In such cases a disentangling method is helpful

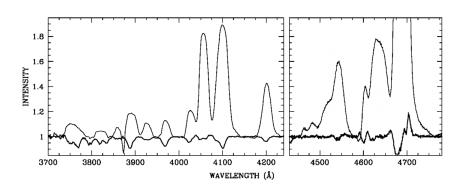
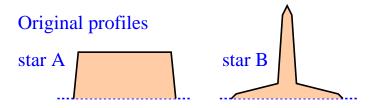
- to obtain the individual spectra of each stellar components:
 - \rightarrow to determine their spectral types;
 - → to study their chemical composition and temperature;
- to improve the determination of the orbit.

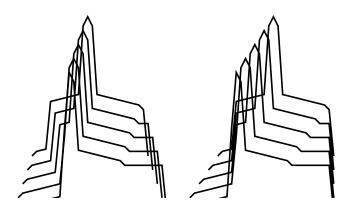
The 'shift and add' method

Many disentangling efforts are based on this iterative algorithm.

- 1. Correct for Doppler shift of star A, then add.
 - \Longrightarrow The A spectrum dominates, B is diluted.
- Subtract this first approximation of A to each spectrum of B.
 ⇒ B only (as a first approximation).
- Subtract this new spectrum of B to each spectrum of A. ⇒ Etc.

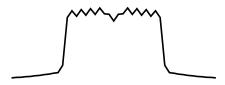
Marchenko, Moffat & Eenens 1998, PASP 110, 1416

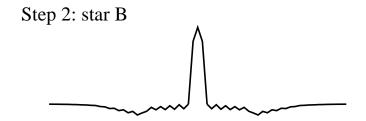




Fig. 1.—Restored spectra of the WR and O components of WR 141. See text for details.

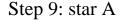
How do we know that the reconstructed profile is a faithful representation of the original stellar profile?

To analize the behaviour of this algorihtm:


- we will start with synthetic profiles
 - \longrightarrow so we can compare it and the reconstructed profile.
- We will use very distinctive shapes,
 - → so any difference is easy to interpret.

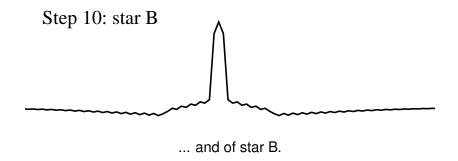

Blends at five phases ... shifted and centered on star A

Step 1: star A

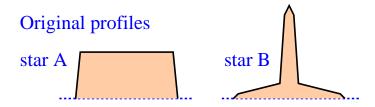


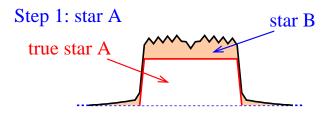

Ten blends, shifted around star A, have been coadded. Star B is 'diluted'.

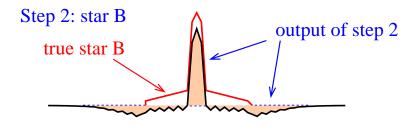
This gives a first approximation of star A.



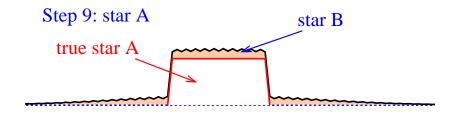
This approximation of star A is then subtracted from the blends to yield star B.

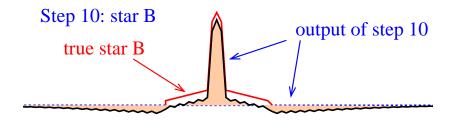



After five iterations, we obtain a good reconstruction of star A.


Problems?

As we have access to the original profiles, we can compare our reconstructed profiles with these:



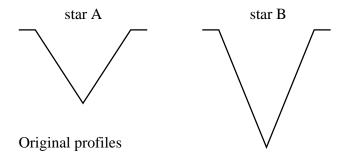

Although diluted over a range of wavelengths, all the flux from star B has been added to star A.

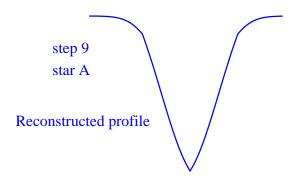
... and subtracted from star B.

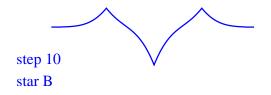
At the end, most of the flux from star B is creating spurious wings of star A.

In the reconstruction of star B, the total flux is zero. The continuum has been shifted.

- 1 The fluxes are not correct.
 - The reconstructed spectrum A contains the fluxes from both stars.
 - The continuum is too low in star B.

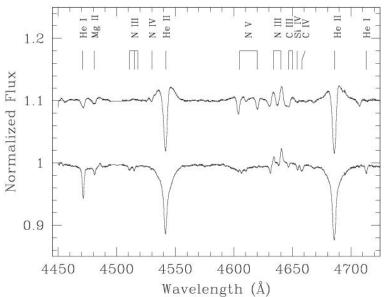

Fluxes are important to determine:

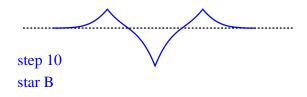

- the spectral type of the components of the binaries;
- abundances in the wind and its ionization.
- 2 Spurious wings have appeared in the spectrum of star A. Wings are used to characterize the mass loss.

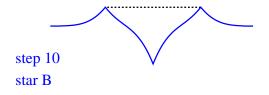

Toward a solution

Let us make the effects worse:

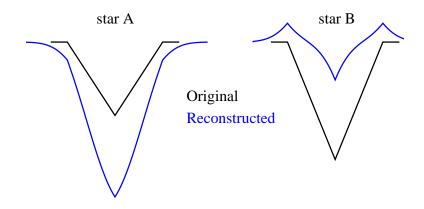
- with the flux in the spectral line of star B stronger than in A;
- with very small Doppler shifts (5) compared to the FWZI (100).

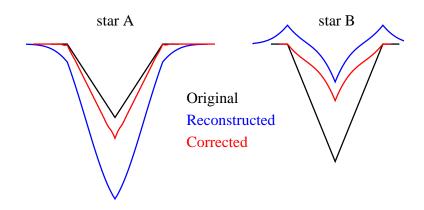





Reconstructed profile

9 Sgr





Reconstructed profile

Reconstructed profile

Future work

Future work

- Asymmetric profiles
- Varying profiles
- Hide-and-seek algorithm