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If you don’t understand these cartoons, ask yourself whether you are in the 

right classroom!!! 
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That gravity should be innate, inherent, and essential to matter, so that one 

body may act upon another at a distance, through a vacuum, without the 

mediation of anything else, by and through which their action and force may 

be conveyed from one to another, is to me so great an absurdity, that I believe 

no man who has in philosophical matters a competent faculty of thinking, can 

ever fall into it. 

Sir Isaac Newton (Third letter to Bentley, 

25 Feb 1693)

Chapter I: A brief history of celestial mechanics
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• One of the main problems of ancient 

astronomy was to predict the position of 

« wandering stars » (Sun, Moon, planets).

• Until the 16th century: geocentric model 

described by Claudius Ptolemeus (85 – 165). 

• Epicycles, deferents and equants. 

Chapter I: A brief history of celestial mechanics
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• 1543: publication of De 

revolutionibus orbium coelestium

by Nicolas Copernicus (1473 –

1543).

• Heliocentric model but still based 

on epicycles and deferents.

Chapter I: A brief history of celestial mechanics
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• Tycho Brahe (1546 – 1601) collected very accurate (for that 

time) astrometric observations and proposed an alternative 

geo-heliocentric model.

Chapter I: A brief history of celestial mechanics
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• Brahe was looking for a skilled 

mathematician able to use and 

interpret his observations.

• Johannes Kepler (1571 – 1630) 

used Brahe’s observations of 

planet Mars and deduced the 

three laws of planetary motion 

summarized in Astronomia Nova

(1609) and Harmonices mundi

(1619). 

• At first these books received 

little attention…

Chapter I: A brief history of 

celestial mechanics
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• Galileo Galilei (1564 – 1642) discovered the theory of free fall. 

• 1687: Isaac Newton (1643 – 1727) combined all these results 

in his theory of gravitation in Philosophiae Naturalis Principia 

Mathematica.

Chapter I: A brief history of celestial mechanics
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• Newton’s theory enabled Edmund Halley (1665 – 1742) to 

predict that the comet of 1682 would return in 1758.

• The comet returned, although with some delay due to the 

effects of Jupiter and Saturn. 

Chapter I: A brief history of celestial mechanics
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• The perturbation of the comet’s 

motion due to Jupiter and Saturn 

requires to deal with the problem 

of more than two bodies.

• The first formulation of this 

problem was due to Leonhard 

Euler (1707 – 1783) who 

developed several mathematical 

tools for the solution of 

mechanical problems. 

• The N-body problem became the 

main research topic in mechanics.

Chapter I: A brief history of celestial mechanics
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• Joseph-Louis Lagrange (1736 –

1813) obtained special solutions 

of the 3-body problem. 

Chapter I: A brief history of celestial mechanics

• Lagrange and Pierre Simon 

Laplace (1749 – 1827) 

developed the theory of 

perturbed motions.
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• The motion of Uranus (discovered 

in 1781) was perturbed by an 

unknown planet. 

• Based on the recorded positions 

of Uranus, Urbain Le Verrier

(1811 – 1877)  predicted the 

position of the unknown planet 

(Neptune) that was discovered in 

September 1846 by Galle and 

d’Arrest at the predicted position. 

Chapter I: A brief history of celestial 

mechanics
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• And the story isn’t over…

• Although General Relativity has replaced Newton’s theory 

for the description of strong gravitational interactions, 

celestial mechanics remains a highly important research 

topic: the long-term stability of the Solar System, planetary 

and exo-planetary migrations, resonances, the study of 

rotation… are only a few examples of topics that are still at 

the forefront of research.

Chapter I: A brief history of celestial mechanics
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• Inertial frame of reference: Oxyz

• Newton’s equations (d = |M1M2|)

Chapter II: The two-body problem
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• Inertial frame of reference tied to the centre of mass C: 

• Relative motion: M2 with respect to M1

• In each case: 

Chapter II: The two-body problem
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• Newton’s equation for a unit mass under the influence of a 

force that derives from the -µ/r potential:

• Motion in a plane (perpendicular to h)

Chapter II: The two-body problem

 
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• Polar coordinates in the plane of the motion:

Kepler’s 2nd law

• Conservation of the total energy:

• Laplace-Runge-Lenz integral:

Chapter II: The two-body problem




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• Only variable vector er. Hodograph = locus of the end Q of the 

velocity vector:

• For a Keplerian motion, the hodograph is a circle. 

• Equation of the trajectory:

Chapter II: The two-body problem

u = 1/r 



v = u - µ/h2 
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• Equation of the trajectory:

• Equation of a conic section:

Chapter II: The two-body problem



with


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• Trajectory = conic section : Kepler’s 1st law 

Chapter II: The two-body problem
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• Trajectory = conical section :

• Circle if e = 0, ε = -µ2/(2h2)

• Ellipse if 0 < e < 1, -µ2/(2h2) < ε < 0

• Parabola if e = 1, ε = 0

• Hyperbola if e > 1, ε > 0

• Whatever the nature of the conic: | l | = e

Chapter II: The two-body problem

 distance at pericentre:


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• Trajectory = ellipse :

2.1 Case of the ellipse




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• Trajectory = ellipse :

2.1 Case of the ellipse 

Kepler’s equation: 





r = a(1 – e cos E) 

Kepler’s 3rd law :
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• r = a(1 – e cos E) : eccentric anomaly

2.1 Case of the ellipse 
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• Hodograph: centre of force inside the circle

2.1 Case of the ellipse
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• Trajectory = parabola 

• Motion on the parabola:

2.2 Case of the parabola






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• Hodograph: centre of force located on the circle (φ between 0 

and π)

2.2 Case of the parabola
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• Trajectory = hyperbola 

• Motion on the trajectory:

2.3 Case of the hyperbola





ch F = (r + a)/(ae) 
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• Hodograph: centre of force located outside the circle 

• φ inside 

2.3 Case of the hyperbola 
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• Solution can be described by 6 + 1 parameters:

with

• Equivalent to the elements 

2.4 Elements of the orbit
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2.4 Elements of the orbit 



32

• Planets of the Solar System:

2.4 Elements of the orbit 
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• In the two-body problem, the masses are assumed to behave as 

point-like masses. To what extent is this a valid assumption?

• In principle, a (solid) spherically-symmetric body behaves as a 

point-like mass.

• There are two problems though: non-spherical distribution of 

the matter inside the body and tidal forces that overcome the 

body’s self-gravity.

• The issue of non-spherical mass distributions will be dealt with 

in chapter V. Here we focus on the problem of the competition 

between tidal forces and self-gravity.

2.5 Example of the limits of the 2-body problem: the 

Roche limit
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• Consider two bodies of masses M (planet) and m (moon) with 

M >> m.

• The Roche radius is the minimum distance between the masses 

below which the body of mass m will break down under the 

influence of the tidal force produced by the body of mass M 

that overcomes the self gravity of the smaller body.

2.5 Example of the limits of the 2-body problem: the 

Roche limit
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• The Roche limit explains the 

disintegration of comet 

Shoemaker-Levy 9 in July 1992 

(followed by the impacts of the 

fragments in July 1994):

2.5 Example of the limits of the 2-body problem: the 

Roche limit
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• The Roche limit also explains the 

existence of rings around giant 

planets: the debris could not 

assemble into a bigger moon or 

come from a moon that was 

disintegrated. 

2.5 Example of the limits of the 2-body problem: the 

Roche limit
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• Let’s assume a rigid satellite (it does not change its shape) held 

together by self-gravity, and rotating synchronously.

2.5 Example of the limits of the 2-body problem: the 

Roche limit

• As long as the small mass δm remains attached to the satellite, 

its relative acceleration and velocity are both zero.
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• Newton’s equation:

2.5 Example of the limits of the 2-body problem: the 

Roche limit

• The normal reaction form N vanishes for
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• “Fluid” satellite (it changes its shape under the effect of the 

tidal attraction of M) represented by two spheres of radius r

and mass m, rotating synchronously.

2.5 Example of the limits of the 2-body problem: the 

Roche limit
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2.5 Example of the limits of the 2-body problem: the 

Roche limit
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• The Lagrangian formalism

• qj j=1,…, n generalized coordinates

• Principle of virtual works:

• Lagrangian: 

• 2nd order differential equations in a space of dimension n

Chapter III: Lagrangian and Hamiltonian mechanics
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• The Hamiltonian formalism

• First order differential equations in a space of dimension 2 n

• pj generalized momentum associated with qj j=1,…,n

• Hamiltonian: 

Chapter III: Lagrangian and Hamiltonian mechanics


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• Hamilton’s canonical equations: 

• If the forces derive from a  potential U (independent of qj):

• If the Hamiltonian does not depend explicitly on certain variables, the 

integration of the canonical equations relative to the conjugated 

variables is straightforward. 

Chapter III: Lagrangian and Hamiltonian mechanics

& 

.
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• The Hamilton Jacobi method:

• Find a new set of variables that preserves the canonical form of 

Hamilton’s equations and simplifies the expression of the Hamiltonian. 

• New set of variables:

• This new set is canonical if: 

• These conditions are met if and only if

Chapter III: Lagrangian and Hamiltonian mechanics

&

&

with
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• The Hamilton Jacobi method:

• New Hamiltonian: 

• The function F* must be such that

• If we choose the new Hamiltonian to be                                                

then,  the generating function G(qj,yj,t) must be such that

Chapter III: Lagrangian and Hamiltonian mechanics



 &
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• Application to the two-body problem:

Chapter III: Lagrangian and Hamiltonian mechanics



Let Π be the instantaneous plane of the 

motion, perpendicular to the OZ’ axis. 

The position of P is described by the 

polar coordinates in the plane. 

Absolute position given by (r, θ, γ, ψ)

Angular velocity vector:


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• Lagrangian:

Chapter III: Lagrangian and Hamiltonian mechanics




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• Canonical variables:

Chapter III: Lagrangian and Hamiltonian mechanics





49

Chapter III: Lagrangian and Hamiltonian mechanics
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Chapter III: Lagrangian and Hamiltonian mechanics








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Chapter III: Lagrangian and Hamiltonian mechanics

The Hamiltonian does not depend on ψ, θ, γ and t.



The variables γ and Γ are not needed to describe the status of 

the system and can thus be discarded. 
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• The Delaunay canonical elements: 

• We search a set of canonical variables (q1, q2, q3, p1, p2, p3) such that 
q1= t – t0 and all other variables are constants.

• This implies:

Chapter III: Lagrangian and Hamiltonian mechanics

&

We wish to preserve those variables that are constants:


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Chapter III: Lagrangian and Hamiltonian mechanics

The condition                                                  implies



with 


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Chapter III: Lagrangian and Hamiltonian mechanics



 t0 is the time of pericenter or apocenter passage. Here we 

choose the pericenter.
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Chapter III: Lagrangian and Hamiltonian mechanics

 Delaunay canonical elements:

Elliptical orbit:


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Chapter III: Lagrangian and Hamiltonian mechanics

The Delaunay elements become ill-defined if e is close to 0 and/or i

is close to 0° or 180°

 Poincaré elements:
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• The Bessel functions of the first kind: 

• Bessel’s differential equation:

• Solutions that are finite in x = 0: Bessel functions of the first kind.

• Generating function: 

Chapter IV: Expanding the elliptical motion in series of e
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• The Bessel functions of the first kind: 

• Important properties:

• Take t = exp(j ψ) :

Chapter IV: Expanding the elliptical motion in series of e
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• The majority of important quantities of an elliptical orbit (e < 

1) are periodic functions of φ, E or M of period 2π.

• These functions can thus be expanded into Fourier series:

with

4.1 Expanding into Fourier series
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• Examples of Fourier expansions: 
• Consider the quantity a/r: 

• It’s an even function of the variables φ, E or M  bk = 0 

4.1 Expanding into Fourier series


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• Examples of Fourier expansions: 

• General expression of cos(pE) and sin(pE): 

4.1 Expanding into Fourier series





62

• Examples of Fourier expansions: 

• r = a(1 – e cos E) & 

• r = a(1 – e cosE) &

4.1 Expanding into Fourier series




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• Examples of Fourier expansions: 

& r = a(1 – e cos E) 

4.1 Expanding into Fourier series


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• If e is a small quantity what can we say about the different 
terms of the Fourier series?

• Bessel functions:

of the order of x|s|  the cos(sM) and sin(sM) terms in the 
expressions of cos (pE) and sin(pE) are multiplied by terms of 
order e|s±p|

• A Fourier series possesses the d’Alembert characteristics of 
degree p, if the dominant term of this series corresponds to the 
pth harmonics. Such a series can be written:

4.2 The d’Alembert characteristics
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• If e is a small quantity, we can restrict ourselves to a limited 

number of terms in the Bessel functions…

4.3 Development into asymptotic series of e
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• If e is a small quantity, we can restrict ourselves to a limited 

number of terms in the Bessel functions and their derivatives.

4.3 Development into asymptotic series of e
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• Examples of developments into asymptotic series:

These developments are not absolutely converging for all

values of e < 1! 

4.3 Development into asymptotic series of e


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• Examples of developments into asymptotic series:

4.3 Development into asymptotic series of e





69

• Examples of developments into asymptotic series:

4.3 Development into asymptotic series of e


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• Examples of developments into asymptotic series:

4.3 Development into asymptotic series of e


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• The associated Legendre functions: 

• General Legendre differential equation:

• Solutions for p ≥ 0: associated Legendre functions

• For p = 0, we get the associated Legendre polynomials 

Chapter V: The forces acting on a body in space
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• Associated Legendre functions: 

• Generating function of the associated Legendre polynomials:

• Recurrence relations:

Chapter V: The forces acting on a body in space
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• A point-like mass (at O) produces a potential at P (different 

from O): 

• Several point-like masses:

• The resulting acceleration writes:

5.1 The gravitational potential



 {



74

• Continuous mass-distribution of density ρ:

5.1 The gravitational potential

 Spherical coordinates (r, θ, λ) with θ the 

latitude and λ the longitude. 
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• Poisson’s equation:

5.1 The gravitational potential

&

Wn(θ,λ) periodic function of   

λ with a period 2π:

 
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5.1 The gravitational potential

& 




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5.1 The gravitational potential

identical to

If O is the centre of mass of the distribution of matter: c1p = s1p = 0


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5.1 The gravitational potential

is no longer a radial vector
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5.1 The gravitational potential

For a given planet, the coefficients of this expression depend upon 

the internal distribution of matter (moments of inertia).
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In the frame of reference rotating 

with the planet: potential due to 

centrifugal force:

5.1 The gravitational potential

Let us assume that the planet rotates as a solid body.

The flattening of the planet depends on J2 and the rotational velocity.



The surface of the planet is an equipotential of U. 

Let’s define the flattening:


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5.1 The gravitational potential

For a body with rotational symmetry about the z’ axis, cnp and snp are 

zero, and 

Special case: spheroid:

is the ellipticity. 

Since                                          we obtain 

For a uniform density, this yields:
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5.1 The gravitational potential

Legendre polynomials are orthogonal, hence

implies

Therefore, we find that the potential outside a spheroid of uniform 

density becomes

For a non-rotating spheroid, the potential at its surface is given by

Equilibrium (U=Cst over the surface) implies a spherical shape for a 

fluid, non-rotating body!  
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5.1 The gravitational potential

Accurate predictions of the motions of satellites require a 

large number of terms in the expression of the potential: n = 

360 in the EGM96 model.
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5.2 The drag force due to the residual atmosphere

Body moving at relative 

velocity 



85

5.3 Radiation pressure

Similar reasoning as for the 

drag force:

Direct solar light + 

reflection by the planet
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5.3 Radiation pressure
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• Consider the following equation:

• The solution of a Keplerian problem can be written as either

• a combination of a conical section and a hodograph (6-dimensional 
space of the geometrical coordinates and the coordinates of the velocity 
vector). Representation of the orbit = 2 curves in two 3-dimensional 
subspaces.

• the elements of the orbit (e.g. 6-dimensional space of Delaunay). 
Representation of the orbit = single point in a 6-dimensional space.

Chapter VI: Perturbations of the Keplerian motion



88

• When the problem becomes non-Keplerian, we define an 

osculating orbit at time t = the Keplerian trajectory with the 

same velocity and same position as the real trajectory at time t. 

The mass would follow this orbit if the non-Keplerian forces 

would disappear at time t. 

• At each moment, one can define the 6 elements of the 

osculating orbit. However, these elements are no longer 

constant as a function of time and the point that describes the 

osculating orbit in the Delaunay space changes with time 

Method of the variations of the parameters. 

Chapter VI: Perturbations of the Keplerian motion
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Chapter VI: Perturbations of the Keplerian motion

Example: osculating 

orbits of Smart 1 upon 

its approach to the 

Moon.
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• For a Keplerian trajectory, we express the coordinates and the 

velocities as a function of the elements of the orbit: 

• With                                                        for a Keplerian motion

6.1 Method of the variations of the parameters and … 

&

&
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• System of 6 equations allowing to determine the time 

derivatives of the 6 osculating elements: 

6.1 Method of the variations of the parameters and … 

The partial derivatives need to be computed 

following the relations of the Keplerian motion. 
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• Alternative approach: distinguish between the Keplerian and 

non-Keplerian part of the temporal variation of a quantity X:

• For the osculating orbit, we get:

• For the angular momentum, Laplace integral and energy, we 

get:

6.1… Gauss equations

&
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• Instantaneous angular velocity of the osculating motion:

• Other formulation of the derivatives of the angular momentum 

and Laplace integral: 

6.1 … Gauss equations 


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• Variation of the mean anomaly, Keplerian part

• and non-Keplerian part: 

• We express the force in cylindrical coordinates:

6.1 … Gauss equations 


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• Gauss equations:

6.1 … Gauss equations 
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• Atmospheric drag force:

6.1.1 Application to atmospheric drag







&

&
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• This delimits the zone for atmospheric re-entry of space debris 

e.g. defunct Chinese space station Tiangong-1 in April 2018: 

6.1.1 Application to atmospheric drag
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• Conservative force:                       with 

6.1.1 Application to the J2 term of the geopotential




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6.1.1 Application to the J2 term of the geopotential 


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6.1.1 Application to the J2 term of the geopotential 


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• Using the Gauss equations:

6.1.1 Application to the J2 term of the geopotential 



102

• Hamiltonian of the Keplerian problem with the canonical 
Delaunay elements:

• If the force P is conservative (potential U’), then the new 
Hamiltonian can be expressed as: 

• Hamilton’s canonical equations yield: 

6.2 The Lagrange equations
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6.2 The Lagrange equations

&


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6.2 The Lagrange equations



&
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• More compact formulation of the Lagrange equations 

(antisymmetric matrix):

6.2 The Lagrange equations
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• Let η be a small parameter and consider the differential 

equation 

• If η = 0, this equation has the solution x0(t). We seek solutions 

of the kind 

• The differential equation can be written to 2nd order in η:

6.3 Differential equations depending on a small parameter
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• Comparing the coefficients of the different powers of η, we 

find that:

• These equations depend on n + 1 constants of integration, 

whereas the original equation depends on a single constant of 

integration. 

6.3 Differential equations depending on a small parameter
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• Determination of the constants of integration. 

1. We set                                                 and

2. We only add a single constant to the solution of the first equation

and we require that:                                                                                                         

• Both methods are equivalent to each other at the order ηn.

6.3 Differential equations depending on a small parameter
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• Suppose that the force P is conservative (potential U’ ) and 

represents a small perturbation (parameter η): 

• We express the variations of the metric elements (a, e, i) 

through the Lagrange equations:

• In the same way for the angular elements (Ω, ω, M):

6.4 Secular, periodic and mixed terms
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• We are searching solutions of the kind 

• At 0th order in η: 

At 0th order, the osculating elements are either constants or 

linear function of time (M):

• At 1st order for the metric elements: 

6.4 Secular, periodic and mixed terms


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• At 1st order for the angular elements: 

Given the expression of a1, we obtain:

6.4 Secular, periodic and mixed terms



Secular term
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• At 2nd order for the metric elements:

6.4 Secular, periodic and mixed terms


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• At 2nd order for the metric elements: 

6.4 Secular, periodic and mixed terms



Mixed term

The increase with time of the mixed term restricts the validity of the 

development.
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• How can we get rid of the mixed terms? 

• Asymptotic development limited to N terms.

• The overlined quantities in the expressions of the angular 

elements are constants (angular velocities) that need to be 

determined.

6.4 Secular, periodic and mixed terms
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• We introduce the arguments of the trigonometric functions:

• Leading to:

6.4 Secular, periodic and mixed terms
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• We express the trigonometric functions as

• At 0th order in η:

• At 1st order in η for the metric elements:

6.4 Secular, periodic and mixed terms
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• At 1st order in η for the angular elements:

with



6.4 Secular, periodic and mixed terms
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• At 2nd order in η for the metric elements:

with



6.4 Secular, periodic and mixed terms
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• At 2nd order in η for the angular elements:

since

&

6.4 Secular, periodic and mixed terms
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• We finally obtain: 

• There are no mixed terms left and the behaviour of the 

development over long time intervals is much better (although 

it remains limited in time).

6.4 Secular, periodic and mixed terms
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• There are various periodic terms that appear in the solution. 

• We distinguish terms corresponding to short periods 

(frequency l n0 with l ≠ 0) and terms corresponding to long 

periods (frequencies proportional to η with l = 0). 

• The long-period terms of order ηn have actual amplitudes 

proportional to ηn-1.  

6.4 Secular, periodic and mixed terms
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• Potential associated with J2: 

with



The potential depends on three variable quantities: 

6.5 Perturbations due to J2

Idea: develop these functions in Fourier series 

of M, expanding the coefficients into series of 

powers of e. 
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• The constant terms of                            are

• At 3rd order in e, we have that

6.5 Perturbations due to J2
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• At 3rd order in e, we note that

• On the other hand,

with 

6.5 Perturbations due to J2
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• We thus find that…

6.5 Perturbations due to J2
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• …and:

• This leads to

6.5 Perturbations due to J2
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• We thus find for U’

6.5 Perturbations due to J2
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• The Lagrange equations hence lead to

6.5 Perturbations due to J2
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• Let us apply an asymptotic development:

• To 0th order in J2:

• Secular terms of the angular elements at 1st order in J2:

6.5 Perturbations due to J2
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• Periodic terms at 1st order in J2:

6.5 Perturbations due to J2
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• Periodic terms at 1st order in J2:



with

6.5 Perturbations due to J2
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• Periodic terms at 1st order in J2:



6.5 Perturbations due to J2
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• Application of the 1st order secular terms in J2: the Sun-

synchronous orbit:

6.5 Perturbations due to J2

= 360°/year
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• Application of the 1st order secular terms in J2: the Tundra and 

Molniya orbits

6.5 Perturbations due to J2

= 0 if i0 = 63.43°

• The longitude of the apocentre

remains constant as a function of 

time. Highly eccentric orbits with 

periods of 12h (Molniya) or 24h 

(Tundra). 

• The satellite moves very slowly at 

apogee allowing an extended 

visibility.
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• Molniya:

6.5 Perturbations due to J2
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• Tundra:

6.5 Perturbations due to J2
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• Other zonal terms: Jn of order J2
2

• Same kind of perturbations (secular, long- and short-term 

periodicities).

• Sectoral and tesseral terms depend on λ:

• Diurnal perturbations due to the Earth’s rotation.

6.5 Perturbations due to J2
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• Consider a system consisting of N point-like or spherical 

masses isolated in space (without external forces). 

• Newton’s equations (inertial frame of reference):

for k=0,…,n=N-1

• These equations depend on 6 N constants of integration. 

• BUT: only 10 classical integrals can be formulated.

• There is thus no general analytic solution for the N body 

problem.

Chapter VII: The N body problem
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• Absence of external forces  conservation of the momentum:

• Therefore the centre of mass moves in uniform velocity 

straight line motion:

 6 classical integrals (components of the vectors that 

describe the initial position and velocity of the centre of mass)

7.1 Integrals of the equation of motion
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• Absence of external forces  conservation of the total angular 

momentum of the system:

7.1 Integrals of the equation of motion 
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• One can express the conservation of the angular momentum 

with respect to the centre of mass:

 3 classical integrals (components of the total angular 

momentum)

7.1 Integrals of the equation of motion 
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• Absence of external forces  conservation of total energy:

7.1 Integrals of the equation of motion 
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• Absence of external forces  conservation of total energy:

 1 classical integral

• A total of 10 classical integrals allowing to check the stability 
of a numerical solution.

7.1 Integrals of the equation of motion 
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• … with respect to the centre of mass (origin of an inertial 

frame of reference):

• Newton’s equation

writes:

7.2 The relative motion

with



146

• … with respect to the most massive mass P0 (not the origin of 

an inertial frame of reference):

• Newton’s equation

writes:

7.2 The relative motion

with



147

• Consider N = 3:

7.3 The 3-body problem





148

• Example: the Earth’s motion around the Sun, accounting for 

the presence of Jupiter:

7.3 The 3-body problem



149

• The Earth’s motion around the Sun, accounting for the 
presence of Jupiter; order of magnitude of the force due to 
Jupiter:

• Same order of magnitude for the force due the Moon on a 
satellite in geostationary orbit.

 In this case, one can treat the force of the 3rd body as a 
perturbation.

This approximation does not hold in all situations (e.g. triple 
stellar systems).

7.3 The 3-body problem


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• Consider the 3-body problem with the masses m0, m1 and m2

having arbitrary values.  

 There exists a family of 5 analytical solutions (Lagrange 

solutions) where the problem can be formulated as the 

combination of two equivalent 2-body problems.

1. The masses are located at the                                   summits of 

an equilateral triangle (2 symmetric                                         

configurations with respect to the                                                     

line m0m1). 

7.3.1 The Lagrange solutions
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Masses at the summits of an equilateral triangle:

7.3.1 The Lagrange solutions





Solution if                  &                                    

at t = 0: identical conical sections 

rotated by 60°.
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7.3.1 The Lagrange solutions
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7.3.1 The Lagrange solutions



154

2. The masses are aligned with P0P1: 

7.3.1 The Lagrange solutions


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Masses aligned:

 3 zeros for this equation

1. one solution for  < 0

2. one solution for 0 <  <1

3. one solution for  > 1

7.3.1 The Lagrange solutions



Solution if                            at t = 0: 

homothetic conical sections.
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7.3.1 The Lagrange solutions
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7.3.1 The Lagrange solutions
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• Suppose that m2 < < min(m0, m1) and that m1 moves on a 

circular orbit around m0 with 

• We neglect m2

• In the frame of reference rotating with P0P1, angular velocity

7.3.2 The restricted circular 3-body problem


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• We project the equation on the axes:

• Roche potential:

7.3.2 The restricted circular 3-body problem


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• Jacobi integral:

• Symmetrical expression of the Roche potential:

• Equipotential surfaces contained in a cylinder of equation

7.3.2 The restricted circular 3-body problem
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• Section of the Roche potential in the x y plane:

7.3.2 The restricted circular 3-body problem
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• Section of the Roche potential in the x z plane:

7.3.2 The restricted circular 3-body problem
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• Section of the Roche potential in the y z plane:

7.3.2 The restricted circular 3-body problem
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• Lagrangian points = relative equilibrium positions:

• All solutions of these equations yield z = 0.

• Different possibilities depending on the value of y:  

1. y = 0

7.3.2 The restricted circular 3-body problem


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7.3.2 The restricted circular 3-body problem
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2. y ≠ 0

7.3.2 The restricted circular 3-body problem



 &
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• Stability of the Lagrangian points: linear analysis

7.3.2 The restricted circular 3-body problem


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• Stability of the Lagrangian points: linear analysis

• Stable along z.

7.3.2 The restricted circular 3-body problem




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• Stability of the Lagrangian points: linear analysis

• Solutions of the kind δx=X exp(αt) and δy=Y exp(αt)

7.3.2 The restricted circular 3-body problem





&



170

• Stability of the Lagrangian points: linear analysis

• L1, L2, L3 points:

 unstable equilibrium

7.3.2 The restricted circular 3-body problem


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• Stability of the Lagrangian points: linear analysis

• L4 and L5:

7.3.2 The restricted circular 3-body problem





&
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• The L4 and L5 points:

• Solutions for α are purely imaginary provided that

• L4 and L5 are stable if 

7.3.2 The restricted circular 3-body problem

 &
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• Orbits about the L4 and L5 points. Let us assume that 

and

• The solutions are long-period oscillations and oscillations with 

frequency close to n1

7.3.2 The restricted circular 3-body problem




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• The amplitudes are solution of 

• We rotate our axes by –π/6: 

• So that: 

7.3.2 The restricted circular 3-body problem


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• For the low-frequency terms,                                   we find:

• This libration mode has much larger amplitude along the 

tangential direction than along the radial direction. 

7.3.2 The restricted circular 3-body problem


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• For the high-frequency terms,

we find:

• This oscillation mode corresponds to an elliptical motion. 

7.3.2 The restricted circular 3-body problem


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• The « Trojans » and the « Greeks »:

7.3.2 The restricted circular 3-body problem
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7.3.2 The restricted circular 3-body problem
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• Libration of Neptune’s Trojans under the influence of the other 

planets:

7.3.2 The restricted circular 3-body problem
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• Are there stable orbits around the libration points L1, L2, L3?

• We have seen that

• For solutions of the kind δx=Xc exp(αt) and δy=Yc exp(αt), one 

can find initial conditions such that the argument of the 

exponential is a pure imaginary number: α = j ω

• δx=R[Xc exp(jωt)] and δy=R[Yc exp(jωt)]

7.3.2 The restricted circular 3-body problem


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• A positive solution for ω² is given by 

• This yields a relation between the complex amplitudes of δx

and δy:

• Finally, we obtain:

7.3.2 The restricted circular 3-body problem



&
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• Lissajous orbit: 

7.3.2 The restricted circular 3-body problem
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• Lissajous orbit: 

7.3.2 The restricted circular 3-body problem
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• Three-body problem: the Sun (P0), planet (P1) and spaceship 

(P2):

• When can this problem be treated in the heliocentric frame of 

reference?

7.3.3 The sphere of influence
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• Let φ be the angle between P1P2 and P1P0 

7.3.3 The sphere of influence






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• Three-body problem: the Sun (P0), planet (P1) and spaceship 

(P2):

• When can this problem be treated in the planetocentric frame 

of reference?

7.3.3 The sphere of influence
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• Let φ be the angle between P1P2 and P1P0 

7.3.3 The sphere of influence






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• The two quantities are of the same order when 

7.3.3 The sphere of influence


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7.3.3 The sphere of influence



190

• The more accurate solution includes a factor  

7.3.3 The sphere of influence
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• Circular restricted 3-body problem with m0 >> m1 >> m2

• Position vector of m2 in reference frame centred on center of 

mass of m0 and m1

• Thus,

• The Roche potential yields

7.3.4 The Tisserand invariant



&


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• Tisserand invariant: 

• E.g. Tisserand invariant for elliptical orbits in the Sun-Jupiter 

system: 

7.3.4 The Tisserand invariant
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7.4 The motions in a planetary system

• The more massive body (the Sun) is much more massive than 

all the planets (m0 >> mk)

• Eccentricities and inclinations are small, avoiding planets to 

come too close to each-other.

• Newton’s equation:

The potentials are different for the different planets.
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7.4 The motions in a planetary system

• We consider the problem of two planets (1 and 2): 

• We introduce the following parameters:




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7.4 The motions in a planetary system

• Developing to 2nd order in α:

The majority of planets have roughly circular orbits with 

low inclinations with respect to the ecliptic.
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7.4 The motions in a planetary system

• Problem of the definition of the longitude of the line of nodes 

and on the longitude of pericentre...

• We introduce more regular elements (for small e and i):
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7.4 The motions in a planetary system

• We express the potential as a function of the elements of the 

osculating orbit (here we restrict ourselves to e²):
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7.4 The motions in a planetary system

• We express the potential as a function of the elements of the 

osculating orbit (here we restrict ourselves to order d in e):


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7.4 The motions in a planetary system

• The development of the potential contains terms of the kind



since
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7.4 The motions in a planetary system

• We still need to express 


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7.4 The motions in a planetary system

• We introduce the resulting expressions of the potential in the 

Lagrange equations.

• We obtain a system of differential equations for the orbital 

elements.

• These equations contain terms 

• The integration of these terms can lead to resonances



202

7.4 The motions in a planetary system

• The haunt for Planet Nine or is there anybody out there? 

• Grouping in perihelion position of distant Kuiper Belt objects 

suggests gravitational influence of a massive planet with an 

anti-aligned perihelion.
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7.5 The Laplace resonance

• Resonance between the orbital periods of 3 or more bodies 

(simple integer number ratio). 

• Most spectacular example: the Galilean moons Io, Europa and 

Ganymede: ratios 1:2:4.



204

7.5 The Laplace resonance 

• Resonance between the orbital periods of 3 or more bodies 

(simple integer number ratio). 

• Most spectacular example: the Galilean moons Io, Europa and 

Ganymede: ratios 1:2:4.
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7.5 The Laplace resonance 

• Resonance between the orbital periods of 3 or more bodies 

(simple integer number ratio). 

• Most spectacular example: the Galilean moons Io, Europa and 

Ganymede: ratios 1:2:4.

+4P
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• The Europa-Ganymede conjunction is tied to the perijove

of Europa:

• θ3 oscillates around 0°. 

7.5 The Laplace resonance 

• The orbital periods are not exactly 

in the 1:2:4 ratios. 

• The Io – Europa conjunction is 

tied to the perijove of Io and the 

apojove of Europa. 

• θ1 et θ2 oscillate around 0° and 

180°. 

Moon a (km) P (days)

Io 421 700 1.769

Europa 671 034 3.551

Ganymede 1 070 412 7.154

Callisto 1 882 709 16.689
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7.5 The Laplace resonance 

• In practice, the Laplace resonance implies a simple 

commensurability between the rates of motion of the Io -

Europa and Europa - Ganymede conjunctions: 

• The Laplace resonance prevents triple conjunctions of the 

three moons. 
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7.5 The Laplace resonance 

• The Laplace resonance prevents Io’s orbit to become 

circularized and maintains Io’s volcanism.
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7.5 The Laplace resonance 

• Other example of (near) Laplace resonance: the exo-planets of 

Trappist-1:
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• In such a tight planetary system, this resonance is essential 

for stability. 

7.5 The Laplace resonance 

Exo-planet P (days) PB/P Pn-1/Pn

B 1.511 1

C 2.421 5/8 5/8

D 4.050 3/8 5/3

E 6.100 1/4 3/2

F 9.206 1/6 3/2

G 12.353 4/3

H 18.766 3/2
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• To study long-term trends, we can approximate each planet of 

the Solar System as a ring of mass mk and radius ak

• The potential is:

• For aj > ak

• For aj < ak

• Hence: 

7.6 Perihelion precession in the Solar System
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• In a nearly circular orbit, the deviations from a perfect circle 

are solution of the equation

where f(r) is a central force per unit mass.

• This leads to oscillations with a period

• Applying this to the potential Uj, we obtain:

• This yields the rates of perihelion precession:

7.6 Perihelion precession in the Solar System
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• Precession of perihelion :

7.6 Perihelion precession in the Solar System
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• Most objects in the Universe rotate.

• Here, we consider rigid body rotation (telluric planets, moons, 
asteroids,…): ω is a constant vector.

• Let CM be the centre of mass, the angular momentum can be 
written:

with the inertia tensor:                                                  

Chapter VIII: The rotation of rigid celestial bodies

for i ≠ j, and 
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• In the principal axes of inertia, the inertia tensor is a diagonal 

matrix:

• Variation of the angular momentum:

8.1 Fundamental concepts
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• Kinetic energy:

• … in the principal axes of inertia:

8.1 Fundamental concepts



217

• Euler angles: (x,y,z) absolute frame 

of reference, (x’,y’,z’) principal axes 

of inertia (rotating frame)

8.1 Fundamental concepts
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• For a freely rotating body (without external forces acting on 

it), 

• These expressions are very complex and we will rather use the 

Andoyer elements than the Euler angles.

8.1 Fundamental concepts
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• Set of canonical elements: angles l, g, h and conjugated 

momenta: L, G, H

8.2 The Andoyer elements
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• Expression of the angular velocity vector:

• Expression of the rotational kinetic energy:

• Hamilton’s canonical equations:

8.2 The Andoyer elements
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• Modified Andoyer elements: if K or J are close to zero:           

p = l + g + h, q = g + h, s = -h, P = L, Q = G – L, S = G – H

8.2 The Andoyer elements
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• Consider a point-like mass m, on circular orbit about the body of 

mass M whose rotation we are studying.

• The potential writes:

• Using the properties of the Legendre polynomials, we find that:

8.3 Perturbations due to an orbiting mass


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• U0 = -GMm/r’, U1 = 0 and 

with  

• Suppose J = 0 and let λ be the longitude of the orbiting mass: 

8.3 Perturbations due to an orbiting mass
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• The Hamiltonian becomes:

• Using the modified Andoyer elements:

8.3 Perturbations due to an orbiting mass
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• Precession: 

• Averaging over long timescales, we find:

• The combined effect of the Sun and the Moon upon the Earth 

yields a precession period of 25645 years. 

8.3 Perturbations due to an orbiting mass
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• Precession of the Earth’s rotation axis: 

8.3 Perturbations due to an orbiting mass
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• Suppose that the orbital plane of the perturbing mass 

undergoes a slow precession at a rate Ω with respect to the 

inertial frame of reference: 

8.4 The Cassini states



228

• The kinetic energy now writes: 

8.4 The Cassini states 






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• Averaged over longer timescales and accounting for the 

rotation/revolution resonance, the Hamiltonian becomes:

8.4 The Cassini states


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• We obtain an equilibrium situation:

8.4 The Cassini states

if

& 
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• For the Moon, k = 0 et k’ = 1: synchronous rotation and line of 

nodes aligned with the intersection between the lunar equator 

and the ecliptic:

8.4 The Cassini states


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• Tides arise from spatial gradients in the gravitational potential. 

• The tides produced by the Moon (and to a lesser extent by the 

Sun)  have a spectacular effect on the level of the ocean’s in 

some places such as Mont Saint-Michel:  

• Tides are not restricted to the Earth-Moon system, but exist in 

many places in the Universe (stars, exoplanets, black-holes,…)

8.5 Tides
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• Here we use a very simplified approach. Consider first that m

does not rotate:

8.5 Tides


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• Since

we find that  

with

• This tidal potential leads to a tidal deformation described by a 

spheroid: 

• For the Earth, the Moon produces ε = -4.8 10-8. 

8.5 Tides


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• The amplitude of the tides depends on the lunar phase (neap 

tides and spring tides): 

• The most accurate method of tidal prediction (near coasts, at 

least) is to carefully measure tides over an extended period, 

and use harmonic analysis. 

8.5 Tides
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• The tidal bulge leads to an exchange of angular momentum 

between the Moon’s orbital motion and the Earth’s rotation.

• This is because, if we account for the Earth’s rotation, the tidal 

bulge lacks behind the Moon’s position by some small angle δ:

• The tidal bulge generates a potential outside the Earth, given 

by 

8.5 Tides
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• The torque produced on the Moon is given by 

• This leads to a slow increase of the Moon’s distance. 

• Because the total angular momentum of the Earth-Moon 

system remains constant, an identical, but opposite torque acts 

upon the Earth, slowing down its rotation: 

8.5 Tides
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• Consider an aspherical body of mass m1 orbiting a spherical 

body of mass m0 with m1 << m0.

• In the principal axes of inertia, the potential outside the 

aspherical mass becomes 

• The force and torque exerted by m1 upon m0 are: 

• Since we consider an isolated system, the torque exerted by m0

upon m1 is

• If                                  , we obtain from Euler’s equations:  

8.6 Spin-orbit coupling
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• Let us call ξ the true anomaly of m1 on its orbit about m0:

• With                             . From Chapter 6, we know:

• This leads to:  

8.6 Spin-orbit coupling
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• This equation is highly non-linear. We can use a representation 

of the conditions at pericentre, i.e. when M = n t = k 2π.

• Let us define                         where q=ko/ks is either 0.5, 1.0 or 

1.5.

• If we average over ks orbital cycles, we obtain: 

8.6 Spin-orbit coupling
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• We thus obtain:

• This leads to spin-orbit resonances (e.g. q=1.5 for Mercury).  

8.6 Spin-orbit coupling


