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 I. Introduction 

 The whole light that we receive from stars arises in their 

atmosphere = narrow transition zone between the stellar 

interior and the interstellar medium. 

 Solar atmosphere: photosphere, chromosphere, transition zone, 

corona. 

 Photosphere = region where the visible light arises. In the case 

of the Sun: 1000 km (1 R

 = 6.96 105 km). The temperature 

varies between 4000 and 8000 K. 
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 I. Introduction 

 Chromosphere (height of about 2500 km in the case of the 

Sun). Temperature increases to about 50 000 K. 

 The chromosphere produces Hα emission as well as emissions 

of Ca II at 3934 Å. 
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 I. Introduction 

 In the transition zone (100 km width in the case of the Sun), 

the temperature increases rapidly. 

 In the corona, the temperature reaches several million degrees. 

The exact heating mechanism (of magnetic origin) of the 

corona remains currently unknown. 
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 I. Introduction 

 In this course, we are mainly interested in the photosphere and, 

to some extent, in expanding atmospheres (stellar winds of hot 

stars). 

 The physical conditions in the photosphere depend on the 

star’s surface gravity and on the radiative flux that crosses the 

atmosphere. 

 Total radiated power:  

 

 Bolometric luminosity (integrated over the full electro-

magnetic spectrum):  
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 1.1 Stellar photometry 

 Photometry = technique to measure the brightness of an 

astronomical source. 

 One distinguishes the apparent brightness (flux) and absolute 

brightness (luminosities).   

 System of magnitudes. Bolometric magnitude:  

 

 

 Observation through a filter with a limited bandwidth: 
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 1.1 Stellar photometry 

 Observation through a filter with a limited bandwidth: 

 

 Bolometric correction: 
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 1.1 Stellar photometry 

 Observation through a filter with a limited bandwidth: 
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 1.1 Stellar photometry 

 Apparent magnitude depends on the distance and the 

interstellar absorption:  
 

 Intrinsic colours (e.g. (B-V)0 and (U-B)0 see Table 1.2). 

Colour-magnitude and colour-colour diagrams: 
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 1.2 Stellar spectroscopy 

 1666: Newton discovers the diffraction of solar light into its 

colours with a prism. 

 1800 and 1801: Herschel and Ritter discover the infrared and 

ultraviolet light, respectively.  

 1802: Wollaston discovers the presence of dark lines in the 

Solar spectrum. 

 1814: Fraunhofer rediscovers the  dark lines and names them 

with the letters from A to H. A & B = telluric lines; C = Hα, F 

= Hβ; D: Na I; H, K: Ca II; G = molecular bands. 

 1842: Becquerel obtains the first photograph of the Solar 

spectrum 

 1872: Draper obtains the first photograph of a stellar spectrum 

(Vega, α Lyrae) 
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 Laws of Kirchhoff & Bunsen: 

– The spectrum of a source of white light is a continuum of 
colours.  

– White light that crosses a cool gas contains absorption lines 
(dark lines). 

– The light emitted by a hot and tenuous gas (e.g. a sodium 
vapour lamp) is made of narrow and intense emission lines 
(bright lines).  

 1.2 Stellar spectroscopy 
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 Decomposition of light into its different components: 

 1.2 Stellar spectroscopy 
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 In a spectrograph, light is decomposed   

– using a prism 

 

 

 

 

 

 

– or using a diffraction grating (either via reflection or transmission) 

 1.2 Stellar spectroscopy 
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 1.2 Stellar spectroscopy 

 Light wave at a point of 

coordinate x: 

 

 

 Transmission function of the 

grating: G(x) = 0 if x is 

outside the grooves of width b, 

G(x) = 1 if x inside  a groove.  

 The diffracted wave becomes: 
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 1.2 Stellar spectroscopy 

 Setting  

 

 one obtains 

 

 

 which is the Fourier 
transform of G(x). 

 Since  

 

 with                        

 one finds 



16 

 1.2 Stellar spectroscopy 

 The function g(θ) is maximum 

at                                                                                                                                   

      with n an integer number 
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 1.2 Stellar spectroscopy 

 The function g(θ) is maximum at  

 

 Equation of the grating:  
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 1.2 Stellar spectroscopy 

 Echelle spectroscopy: highest spectral resolution 



19 

 1.2 Stellar spectroscopy 

 Long-slit spectroscopy. Raw data include: 

1. Biases (offsets applied to the CCD). 

2. Dark exposures (dark current of the CCD). 

3. Flat fields (tungsten lamps, inter-pixel variations) 

4. Hollow cathode (ThAr, HeAr, NeAr,… lamps) 

5. Observations of the sky (stars…) 

6. Possibly standard stars for flux or radial velocity 
calibrations… 

 Data reduction:  

1. Subtraction of the bias and the dark current 

2. Division by the flat field 

3. Wavelength calibration. 
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 1.2 Stellar spectroscopy 

 Flux calibration of the spectra: wide slit to ensure that all 

the flux enters the instrument (spectral resolution depends 

on the « seeing »).  

 

 Absolute calibration based on absolute flux of Vega 

(challenging operation, subject to uncertainties of at least 

1%).  
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 1.3 Spectral classification 

 Angelo Secchi (1818 – 1878) observed the spectra of about 

4000 stars and discovered the existence of different spectral 

types.   
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 1.3 Spectral classification 

 At Harvard observatory, Edward Pickering (1846 – 1919), 

initiated the study of a large sample of photographic stellar 

spectra. With the money from a donation from Henry Draper’s 

widow, he hired women “because they are cheaper and more 

efficient than men”. 
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 1.3 Spectral classification 

 1890 – 1900: Williamina Fleming (1857 – 1911) introduced a 

classification based on the intensity of hydrogen lines. 
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 1.3 Spectral classification 

 Annie Cannon (1863 – 1941) improved Fleming’s method and 

proposed a sequence  O B A F G K M                                        

and sub-classes (e.g. G2, A0,…) 

 This classification is based on a series of criteria about the 

relative intensity of spectral lines. 

 Mnemonic: « Oh, Be A Fine Girl/Guy, Kiss Me! »  
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 1.3 Spectral classification 

 Antonia Maury (1866 – 1952), Ejnar Hertzsprung (1873 – 

1967) and Henry Russell (1877 – 1957) introduced the concept 

of a bi-dimensional classification.   

 In 1943, this gave rise to the concept of luminosity classes: 0 

hypergiant, I, Ia, Ib, Iab supergiant, II luminous giants, III 

giants, IV sub-giants, V dwarfs, VI sub-dwarfs in the MKK 

classification (Morgan, Keenan & Kellman). 
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 1.3 Spectral classification 

 H-R diagram. 

 At first it was thought 

that stars evolve along 

the main sequence 

from spectral type O 

(early) to M (late). 
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 1.3 Spectral classification 

 Until the years 1980, spectroscopy was done with 

photographic plates.  

 To classify the spectra, one used observations of standards 

stars in the blue (maximum sensitivity of photographic plates) 

between Ca II K and Hβ.  

 Today, one uses CCDs along with a series of digital spectral 

atlases and/or criteria based on ratios of spectral line 

intensities.   
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 1.3 Spectral classification 
 Balmer lines and Balmer discontinuity are strongest in spectra 

of A-type stars. 



29 

 1.3 Spectral classification 
 Lower number of lines (optical domain) in the spectra of O-

type stars. 
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 1.3 Spectral classification 

 O-type stars: He I 4471 / He II 4542 
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 1.3 Spectral classification 

 B-type stars: absence of He II, He I 4471 / Mg II 4481 
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 1.3 Spectral classification 

 B-type stars: luminosities set by O II 4348/ H γ ratio. 
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 1.3 Spectral classification 

 A-type stars: luminosity set by width of hydrogen lines 



34 

 1.3 Spectral classification 

 A-F-G stars: intensity of metal lines, G-band  
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 1.3 Spectral classification 

 G-K type stars: intensity of  the G band, Fe I 4325/Hγ ratio 
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 1.3 Spectral classification 
 G-K type stars: luminosity set by intensities of CN bands and Y 

II 4376 / Fe I 4383 ratio 
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 1.3 Spectral classification 

 K-M type stars: TiO and CaOH bands 
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 II. Interactions between matter and radiation 

 The transport of energy in a stellar atmosphere is mainly done 

through radiation. Convection and conduction play only a very 

minor role and are usually neglected. 

 Interactions between radiation and matter determine the shape 

of the spectrum of a star. 

 The equations of radiative transfer are at the heart of this 

subject.   
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 2.1 Basic concepts 

 Specific intensity: Iν quantity of energy dEν in the frequency 

range [ν,ν+dν] that crosses a surface element dA during a time 

interval dt under an angle θ with respect to the surface and 

within an interval of solid angle dω.  

 

 

 

 

 

 

 Mean intensity:   
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 2.1 Basic concepts 

 Net radiative energy flux: Fν = first order moment of Iν with 

respect to cosθ (zero for an isotropic radiation field):  

 

 

 Astrophysical flux: 

 

 At the boundary between the region that radiates and the 

interstellar space: 

 

 Emerging flux:   
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 2.1 Basic concepts 

 2nd order moment of Iν with respect to cosθ:  

 

 

 Quantity related to the radiation pressure: 

 

 

 Total radiation pressure:  
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 2.2 Radiative transfer 

 Consider radiation that crosses a layer of material of width dx:   

 
 

 The absorption coefficient contains contributions from the true 

absorption and diffusion. 

 Optical depth: 

 

 If the matter does not emit any radiation:  

 
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 2.2 Radiative transfer 

 If the material does emit radiation:  

 

 Emission is made of true emission and scattered photons. 

 Source function: 

 If the emission is only due to scattering:  

 

 

 If the absorption coefficient is independent of the direction: 

 

 For a local thermodynamic equilibrium (LTE; pure absorption 

and pure emission): 

 
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 2.2 Radiative transfer 

 Equation of radiative transfer: 

 

 

 Look for formal solutions of the kind 

 The equation now becomes: 

 

 

 And the solution is  
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 2.3 Local thermodynamic equilibrium 

 Consider an atom with a number 

of different energy levels. 

 In thermodynamic equilibrium, 

the populations of the different 

levels are given by the Boltzmann 

law:  

 

 

 

 Consider the simplified situation 

of a two-level (u and l) atom. 
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 2.3 Local thermodynamic equilibrium 

 The probability of a spontaneous transition between u and l is               

Au,l dt dω 

 The probabilities of transition u → l and l → u induced by 

radiation are Bu,l Iν dt dω and Bl,u Iν dt dω, respectively. 

 The absorption coefficient corrected for stimulated emission 

thus becomes:  

 

 LTE implies: 

 

 & Remain valid 

outside LTE.  
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 2.4 Radiative transfer in different geometries 

 Spherical atmosphere: 

 

 

 

 

 
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 2.4 Radiative transfer in different geometries  

 Plane parallel atmosphere:  

 

 

 

 

 

 

 

 

 

Change in the 

definition of τν.  
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 2.4 Radiative transfer in different geometries  

 

 

 

 Integrated form of the equation of radiative transfer: 

 
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 2.4 Radiative transfer in different geometries  

 Resulting flux:  

 

 

 

 

 Exponential integral of degree n: 
 

 

 Emerging flux: 

 
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 2.5 Radiative equilibrium 

 There is no production of energy inside the stellar atmosphere. 

Energy is only transported: 

 

 

 

 This situation yields the 3 Milne equations if Sν does not 

depend on the direction.  

 1st Milne equation: consider the equation of radiative transfer 

 

 
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 2.5 Radiative equilibrium  

 Integrating over all frequencies, one obtains the first Milne 

equation: 

 

 

 

 

 Second Milne equation: 
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 2.5 Radiative equilibrium  

 Third Milne equation: multiply the transfer equation by cosθ 

and integrate over solid angle. 

 

 

 

 

 

 

 Grey atmosphere: 
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 2.5 Radiative equilibrium  

 Milne equations for a grey atmosphere: 

 

 

 

 

 

 Solution found by Eddington:  

 I(τ) = Iout (τ) for 0 ≤ θ < π/2 and  

 I(τ) = Iin (τ) for π/2 ≤ θ ≤ π  
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 2.5 Radiative equilibrium  

 Integration of Milne’s 3rd equation: 

 

 

 

 Boundary conditions at the top of the atmosphere: 

 

 

&  J = 3 K   

 
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 2.6 The absorption coefficient 

 The absorption coefficient in the continuum depends on the 
temperature stratification of the atmosphere.  

 It reflects the bound – free and free – free processes. 

 The absorption coefficients must be corrected for the effect of 
stimulated emission (e.g. in LTE): 

 

 

 The opacity of the continuum: mainly due to hydrogen (most 
abundant chemical element in “normal” stars). 

 Bound – free absorption from energy level n  

with 
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 2.6 The absorption coefficient 

 Bound – free absorption from energy level n  

 

in LTE with 
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 2.6 The absorption coefficient 

 Hydrogen bound – free absorption from energy level n  
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 2.6 The absorption coefficient 

 Hydrogen bound – free absorption from energy level n  
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 2.6 The absorption coefficient 

 The Balmer discontinuity (3646 Å) across the Hertzsprung-
Russell diagram: 
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 2.6 The absorption coefficient 

 Free – free absorption of hydrogen 

 

 

 

 

 

 

 

 

 

 

 

 Neutral hydrogen is the main source of opacity in the 
atmospheres of B, A and F-type stars. 

 

in LTE with 
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 2.6 The absorption coefficient 

 Bound – free absorption of the negative hydrogen ion: H– 

formed by the capture of a free electron coming from the 
ionization of metals. The binding energy is 0.755 eV. 

 Main source of opacity in the Sun between 4000 and 15000Å! 
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 2.6 The absorption coefficient 

 At first sight, the importance of the H–  ion is not obvious: for 
a solar-type star, compared to neutral hydrogen, the H– ion 
only accounts for a relative abundance of 3 × 10-8 

 However, since we are interested in the opacity in the optical 
domain, it is not the full population of neutral hydrogen that 
matters, but only those H atoms that have their electron on the 
n=3 energy level. 

 Hence N(H, n=3)/N(H–) = 0.02. 
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 2.6 The absorption coefficient 

 Other sources of opacity in the continuum: hydrogen 
molecules (cool stars), helium (neutral or ionized in OB-stars), 
free electrons (Thomson scattering, hot stars) 

 

 

 

 

 

 

 

 

 

 

 Metal ions and atoms (mostly in the UV). 

 Molecules (TiO,…) in cool stars… 

σ 

He I 
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 2.7 The line absorption coefficient 

 Consider the electric field of an electromagnetic wave moving 
along the x axis in a medium of permittivity ε: 

 

 

 The wave moves at a velocity 

 

 

 where we have 

 
 

 z is the separation of the charges of the dipole. 

 In quantum mechanics, the interaction between the electron 
and the photon triggers oscillations of the electron density (the 
electron’s probability of being present at a specific location): 
..\Quantum\index.html 

../Quantum/index.html
../Quantum/index.html
../Quantum/index.html
../Quantum/index.html
../Quantum/index.html


66 

 2.7 The line absorption coefficient 

 In classical mechanics, the electron behaves as a forced and 

damped oscillator (emission of light induces a loss of energy): 

 

 
 

 We search solutions of the kind: 

 

 Hence:  

 

 

 

 We thus obtain: 

 

 

 
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 2.7 The line absorption coefficient 

 The intrinsic absorption coefficient can thus be written as a 
Lorentzian profile: 

 

 

 

 

 If true, this result implies that all lines should have identical 
integrated strength! 

 

 

 Quantum mechanical treatment 

 

 
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 2.7 The line absorption coefficient 

 Oscillator strength: 

 

 Building a model atmosphere requires a huge number of 
atomic parameters.  

 A recent database of such parameters is the Atomic Spectra 
Database of the National Institute of Standards & Technology 
(NIST): http://www.nist.gov/pml/data/asd.cfm 

 A compilation of atomic lines may be found on the website 
http://www.pa.uky.edu/~peter/atomic 

 

http://www.nist.gov/pml/data/asd.cfm
http://www.pa.uky.edu/~peter/atomic
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 2.7 The line absorption coefficient 

 Collisional broadening (pressure broadening): the interaction 
between an atom and its neighbours alters the energy levels of 
the atom. 

 



70 

 2.7 The line absorption coefficient 

 Pressure broadening yields an absorption coefficient: 

 

  

 where the damping coefficient depends on the average time 
between two collisions.  

 

 One distinguishes different types of broadening: 

1. Linear Stark effect (p = 2) due to protons and free electrons. 
Important for hydrogen. 

2. Quadratic Stark effect (p = 4). Important in atmospheres of 
hot stars (ions and free electrons). 

3. van der Waals interaction (p = 6) in the atmospheres of 
cooler stars (action of neutral hydrogen). 
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 2.7 The line absorption coefficient 

 The impact of the linear Stark effect on the lines of 
hydrogen in A-type stars: 
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 2.7 The line absorption coefficient 

 Linear Stark effect: the electric field lifts the degeneracy of 
the energy levels of same principal quantum number: 

 

 Approximation of the nearest neighbour: it’s the nearest 
disturber that has the largest effect. 

 Probability that the nearest disturber be located in a shell of 
inner radius R and outer radius R + dR = product of the  
probability that a disturber be located in this shell and the 
probability s(R) that no other disturber lies within a sphere 
of radius R: 

 

where 
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 2.7 The line absorption coefficient 

 Let R0 be the average distance between particles: 

 

 

 

 

 

 

 

 We can thus express the probability in terms of the electric 
field produced by the nearest neighbour: 

 

since  
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 2.7 The line absorption coefficient 

since 

 

Each transition between 

sublevels has its own oscillator 

strength and the resulting 

absorption coefficient is the 

weighted (by p(E)) average of 

the different Stark components:  
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 2.7 The line absorption coefficient 

 Thermal broadening: thermal agitation of the absorber 
creates a Brownian motion with a radial velocity component 
(hence Doppler effect): 

 

 

 

 

 

 The Doppler velocity is defined as:  
 

 This corresponds to a Doppler wavelength shift of: 

 

 

M-B distribution: 

 
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 2.7 The line absorption coefficient 

 Absorption coefficient broadened by thermal agitation: 

 

 

 

 This is a Gaussian profile.  

 There exist other motions of the material which arise from 
non-thermal processes (micro-turbulence):  

  
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 2.7 The line absorption coefficient 

Comparison Lorentzian and Gaussian: 
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 2.7 The line absorption coefficient 

 Combination of different broadening effects: 

  α = α(intrinsic) * α (collisional) * α(thermal) * α(microturbulence) 

 

     convolution of 2 Lorentzians     convolution of 2 Gaussians 

 

 

 

 

 

 Voigt-Hjerting function:  

 
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 2.7 The line absorption coefficient 

Voigt-Hjerting function: 

Gaussian in the core, 

wings due to Lorentzian 
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 III. LTE plane-parallel stellar atmospheres 

 Model atmosphere = table giving the physical parameters of 
the gas as a function of optical depth.  

 One takes a number of simplifying assumptions: 

1. Plane-parallel geometry 

2. Hydrostatic equilibrium: 

 

 for an isothermal atmosphere, one defines the pressure scale 
height 

 

 The equation of hydrostatic equilibrium yields: 

 

 
 

 A star with a large value of g will have a more compact 
atmosphere. The plane-parallel approximation is thus better 
justified for dwarfs than for giants or supergiants.  

 

 
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 III. LTE plane-parallel stellar atmospheres 

 One takes a number of simplifying assumptions: 

3. There are neither star spots, nor granulation.  

4. There is no magnetic field. 

5. Atmosphere in LTE: the populations of the energy levels are 
given by the Boltzmann and Saha equations: 

 

 

 

 

 

 

 Non-LTE conditions are strongest in the atmospheres of hot 
stars with very intense radiation fields. 
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 3.1 The source function 

 The source function S(τ) plays a fundamental role. It is 
crucial for the computation of specific intensities, fluxes,… 
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 3.1 The source function 

 One way to deal with the source function is to expand it into 
a series:  

 

 

 If we set 

 

 

 

 

 

 

 From this relation we see that the limb darkening actually 
reflects the behaviour of the source function. Determining 
the limb darkening observationally hence allows to derive 
the source function.  

 
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 3.1 The source function 

 Example: limb darkening of a grey atmosphere with the 
Eddington solution. 

 

 

 

 

 

 Labs formulation:  

 

 
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 3.1 The source function 

 Limb darkening of a grey atmosphere (comparison 
Eddington vs. Labs): 
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 3.1 The source function 

 The opacity depends on the electron density.  

 Consider a chemical element Z with abundance (relative to H): 

 

 Ionization equilibrium                                                                         
is described via the Saha equation:  

 

 

 

 

& 

 
These equations are solved 

iteratively. 
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 3.2 The diffusion approximation 
 For large optical depths, LTE is a good approximation.  

 However, the atmosphere cannot be isothermal, otherwise there 

would be no transport of radiative flux. 

 Consider a Taylor expansion of  the source function as a 

function of optical depth: 

 

 

 Here, we restrict ourselves to the first 2 terms of the expansion: 

 

 

 The specific intensity hence becomes 
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 3.2 The diffusion approximation  

 
 

 We deduce: 

 

 
 

 Radiative energy is transported owing to the temperature gradient.  

 Rosseland opacity: weighted by the flux. 

 

 

 Temperature profile: 



89 

 3.3 Line blanketing 

 Opacity is larger in the lines than in the continuum.  

 The opacity of the lines partially blocks the radiative flux.  

 Therefore, the available “bandwidth” for the radiative flux 
becomes narrower. 

 To evacuate the radiative flux, the temperature in the part of the 
atmosphere where the lines form (T’eff) must thus increase. 

    Teff
4/T’eff

4 = 1 – f 
 

 In the case of the Sun, “line blanketing” yields f = 0.014 which 
results in a difference in effective temperature of 200K 
compared to a hypothetic case of an identical star without 
spectral lines.  
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 IV. Diagnostics from line and continuum 

spectra 
 Use of spectral lines and properties of the continuum to infer 

the physical properties of the stellar atmosphere and of the 
star.   

 Measurements of spectral lines (and their limitations).  

 Link between line flux and line opacity. 

 Intensity of spectral lines as a function of 

1. Populations of energy levels (statistical equilibrium) 

2. Temperature and pressure 

3. Chemical abundances  

 The influence of photospheric velocity fields on the line  
profiles 

1. Micro and macro-turbulence 

2. Stellar rotation 

 Observational determination of the stellar properties  
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 4.1 Measurements of spectral lines 

 Observed spectrum = convolution of real spectrum and instrumental 
response: 

 

 

 In Fourier space: 

 

 

 The instrumental profile is determined by observing lines that are 
intrinsically very narrow. 

 If the instrumental response is sufficiently well known, one can 
attempt a deconvolution (difficult in practice). 
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 4.1 Measurements of spectral lines 

 Strength of a spectral line: concept of equivalent width: 
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 4.1 Measurements of spectral lines 

 Measurement of the line position, various methods: 

1. Cross-correlation with synthetic profile or spectrum of a 
standard star. 

2. Bisector method. 

3. Fit of a Gaussian. 

 Measures in the air or in a vacuum: speed of light in the air v = 
c/n where n0 = 1.0003 under normal conditions of temperature 
and pressure. 

 
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 4.2 Link between line flux and opacity 

 Consider lν and κν the opacities in the line and in the continuum. 

Consider jl
ν  and jc

ν the emissivities of the line and continuum.  

 The total optical depth becomes:  

 The total source function writes 

 

 

 where  

 

 The emerging flux of a plane-parallel atmosphere becomes: 

 

 



95 

 4.2 Link between line flux and opacity 

 If the source function can be described by the Eddington 

solution: 

 

 Hence, S(τ1) = Fν(0)/π  provided that τ1 = 2/3 (Eddington-

Barbier relation) 
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 4.2 Link between line flux and opacity 

  S(τ1) = Fν(0)/π  & τ1 = 2/3  

 For a weak line, we get 

 

 

 Expanding the source function to 1st order:  

 

 

 Thus, 
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 4.2 Link between line flux and opacity 
 For very opaque lines, τ1 is not reached inside the photosphere, but 

only inside the chromosphere. Temperature increases inside the 

chromosphere. If there is enough material in the chromosphere, one 

observes chromospheric emission lines: 
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 4.3 Line strength  
 The strength of a line increases when the number of absorbers 

increases. One needs to know the populations of the atomic energy 

levels. 

 Outside LTE conditions, we make the assumption of statistical 

equilibrium. 

 Emission:  

 Net absorption: 
 

 Source function of the line: 

 
 

 Statistical equilibrium: 
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 4.3 Line strength  
 Statistical equilibrium: M linearly dependent equations, 

underdetermined system. 

 

 

 Transition rates: 

 

 

 

 

 

 Closure condition: 

 

 

 One usually suppresses the equation relative to the ground level. 
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 4.3 Line strength  
 Iν depends on Sν which depends on the populations Nu, Nl which in 

turn are set by the equations of statistical equilibrium that involve Jν 

 This problem must be solved in an iterative way. 

 Λ operator 

 

 

 Λ iterations 

 Simplifications such as grouping some energy levels into 
“superlevels” and linearization of the Λ operator. 
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 4.3 Line strength  
 Numerical implementation of Λ iterations: the Feautrier method 

 The equations of radiative transfer are discretized on a grid of nodes 

in optical depth τ (index i) and μ = cos θ (index j): for instance 
 

 

 

 The transfer equation is split into two parts 

 

 

 

 

 With μ ≥ 0 and the boundary conditions:   

 
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 4.3 Line strength  
 One introduces new variables: 

 

 

 

 The transfer equation yields 

 

 

 

 

 Hence the 2nd degree equation in Pν:   

 
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 4.3 Line strength  
 

 

 This equation is discretized as  

 

 

 

 Tri-diagonal matrix equation, resolution straightforward. 

 Numerical Λ iteration:  

1. Start with an initial estimate of the source function 

2. At each iteration, compute  

3. Use the mean intensity to solve the equations of statistical 

equilibrium and compute a new approximation of the source 

function. 
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 4.3 Line strength  
 The temperature is a key parameter for the strength of a line.  

 If continuum absorption is dominated by the negative hydrogen ion: 

 

 

 Consider a line of an ion Zy where Zy is the dominating ionization 

state of the species Z.  

 

 

 

 

 

 The strength of the line decreases as pressure increases. 

 

 

 
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 4.3 Line strength  
 

 

 Consider a line of an ion Zy where Zy+1 is the dominant ionization of 

the species Z.  

 

 

 

 The line strength does not depend on pressure. 

 

 
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 4.3 Line strength  
 
 

 Consider finally, a line of an ion Zy where Zy-1 is the dominant 
ionization state of species Z.  

 

 

 

 

 

 The line strength decreases strongly with increasing pressure. 

 

 

 
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 4.3 Line strength  
 If the continuum absorption is dominated by the ionization of 

neutral hydrogen: 

 
 

 Consider the same situations as previously: a line of ion Zy where Zy 
is the dominating ionization state of species Z.  

 

 

 

 

 The line strength is independent of pressure. 

 

 
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 4.3 Line strength  
 

 

 Line of an ion Zy where Zy+1 is the dominant ionization state.  

 

 

 

 

 

 Line strength increases with pressure.  

 

 

 
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 4.3 Line strength  
 

 

 Consider a line of ion Zy where Zy-1 is the dominant ionization state 

of species Z.  

 

 

 

 

 

 The line strength decreases with increasing pressure. 

 In B, A, and F stars, the hydrogen lines are broadened by the linear 

Stark effect (proportional to the electron pressure). The lines are 

stronger in stars of lower luminosity.   

 

 

 
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 4.3 Line strength  
 The strength of a line generally increases with the abundance of the 

element.   
 

 H(a,v): Voigt – Hjerting function:  

 

 In LTE: 

 Consider a model atmosphere with a linear dependence of the 

source function on optical depth: 

 

 

 When η tends towards infinity: 
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 4.3 Line strength  
 

 

  

 The equivalent width becomes:  

 

 Curve of growth: 

 

&  
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 4.3 Line strength  
 Curve of growth:  

1. Linear increase of EW with 

the number of particles 

(Doppler core of the line gets 

deeper). 

2. Saturation: opacity in the core 

reaches its maximum value. 

3. Increase as the square root of 

the number of particles 

(increase of the wings of the 

line).  

1 

2 

3 
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 4.3 Line strength  
 Other way to illustrate the concept of curve of growth: suppose the 

line forms in a reversal layer above the region where the continuum 

is formed 

 

 

 For a low number of absorbing particles, the optical depth is small 

and one finds: 

 When the wings get important: 

 

with 

 

 
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 4.4 Photospheric velocity fields 
 Photospheric velocity fields can be classified into several 

categories.  

1. Apparently chaotic motion: micro- and macro-turbulence. 

2. Radial and non-radial pulsations (see lectures on Astro-seismology 

or Variable Stars) 

3. Rotation of the star about its axis.   
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 4.4.1 Micro- and macro-turbulence 
 The Sun: spatial resolution allows distinguish granulation due to 

motion in the upper part of the convective zone. Brighter regions = 

ascending hot material, darker regions = cooler, descending 

material.    

 

 

 

 

 

 

 

 

 The velocity field of the Sun’s non-radial pulsations are superposed 

to these motions. 
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 4.4.1 Micro- and macro-turbulence 
 Red Supergiant Antares: resolved with VLTI  

 

 

 

 

 Continuum and CO lines yield different pictures: 
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 4.4.1 Micro- and macro-turbulence 
 Detailed investigation of Antares reveals complex (large-scale) 

turbulent motion in the extended parts of the stellar atmosphere: 
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 4.4.1 Micro- and macro-turbulence 
 Other stars: the individual granulation cells cannot be resolved, but 

the effect of the velocity field on the line profiles can be measured. 

 One distinguishes  

1. micro-turbulence (“turbulent elements” are small compared to the 

length corresponding to τ = 1), e.g. Alfvèn waves. Micro-turbulence 

broadens the line profiles (Gaussian of width a few km s-1). 

2. macro-turbulence (“turbulent elements” are of comparable size to 

the length corresponding to τ = 1). In this case, each “turbulent 

element” produces its own spectrum, shifted in wavelength by the 

corresponding Doppler shift. 

 These motions do not necessarily correspond to genuine 

hydrodynamic turbulence, but may arise from the combination of 

motions of different origins. 
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 4.4.1 Micro- and macro-turbulence 
 One of the consequences of macro-

turbulence due to granulation: “C-shape” of 

photospheric lines (bi-sector shifted by about 

100 m s-1 between the wings and the core of 

the line). 
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 4.4.1 Micro- and macro-turbulence 
 Let Θ(Δλ) be the fraction of the photons emitted in an interval 

shifted by a Doppler shift Δλ.  

 
 

 Iν is the specific intensity in the absence of macro-turbulence.  

 Suppose that the macro-turbulent cells follow a Gaussian 

distribution of standard deviation v0: 

 

 

 Model of purely radial or tangential macro-turbulence: velocity of a 

cell is either radial (fraction AR) or tangential (AT = 1 -  AR): 

 
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 4.4.1 Micro- and macro-turbulence 

 

with 

if ζR = ζT = ζ , then: 
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 4.4.1 Micro- and macro-turbulence 

 
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 4.4.2 Rotation 
 Stellar rotation velocities range between a few km s-1 and several 

hundred km s-1. 

 Sun: angular velocity depends on the latitude (differential rotation).  

 Rotation modifies the shape of a star, leading to a non uniform 

distribution of the surface gravity and hence the surface temperature 

(gravitational darkening effect).  

Example: Achernar (α Eri, 

B6Vep), rotational velocity = 

250 km/s 
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 4.4.2 Rotation 
 In principle, one has to discretize the stellar surface into a grid of 

points with different temperatures and gravities, and to compute the 

specific intensity in each point according to its parameters. 

 

 

 

 

 
 

 Here, we consider the simpler (idealized) situation of stellar surface 

rotating as a solid body.  

 In each point of the surface R (x, y, z), one can thus write: 

 

 where Ω is a constant vector. 
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 4.4.2 Rotation 
 

 

 

 

 Ωx = 0 and Ωy = Ω sin i 

 Let us consider the radial 

 velocity (positive for receding  

 motion) 

 

 

 

 

 One has to evaluate the flux at a wavelength shifted by the Doppler 
shift corresponding to the local value of x. 

 

 
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 4.4.2 Rotation 
 One has to evaluate the flux at a wavelength shifted by the Doppler 

shift corresponding to the local value of x. 

 

 

 

 

 

 

 In the absence of macro-turbulence, consider the ratio between the 

specific intensity of the line at Δλ and the continuum: 



127 

 4.4.2 Rotation 
 

 

 x = R sinθ cosφ & y = R sinθ sinφ  

 

 

 

 We introduce a function G(Δλ) such that  

 

 

 

 

 

 

 

 

The line profile widened by rotation is the 
convolution of the intrinsic profile and the function G.  
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 4.4.2 Rotation 
 

 

 

 For a linear limb-darkening law 

 

 

 

 

 

 We thus obtain: 

 

& 

 
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 4.4.2 Rotation 
 If we account for the effects of macro-turbulence:  

 

 

 

 

 With a linear limb-darkening law 

 we obtain 

 

 

 

 

 

 The function M(Δλ) includes now the effects of rotation and of 
macro-turbulence. 
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 4.5 Observational determination 
 Use of the different observational diagnostics to determine the 

fundamental parameters of the stars. 

 Effective temperature: 

1. Slope of the Paschen continuum (if the interstellar reddening is 

known) 

2. Relative strength of pairs of lines sensitive to temperature 

 Pressure: 

1. Strength of lines sensitive to gravity (this allows to evaluate the 

“spectroscopic mass” of the star): 
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 4.5 Observational determination 
 Simultaneous determination of temperature and pressure: equivalent 

widths of two lines of the same ion with different sensitivities on T 

and g (lines arising from levels that have different excitation 

potentials). 

 One searches the intersection between isocurves of the EWs. 
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 4.5 Observational determination 
 Determination of the chemical composition:  

1. Empirical curve of growth: the curve of growth is intrinsically the 

same for all lines of an ion. In the linear part of the curve, one finds: 

  

 

 Hence,  

 The different curves of growth are shifted horizontally and one 

determines the shift                 of each line to minimise the 

dispersion of the points around the curve. 

 

 

 

2. Global fit of the spectrum with a model atmosphere code.  
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 4.5 Observational determination 
 Solar abundances: logarithm of the hydrogen abundance arbitrarily 

set to 12.0. 
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 4.5 Observational determination 
 Projected rotational velocity: study lines free of blends and weakly 

affected by collisional broadening. In fast rotators, gravity 

darkening lowers the contribution of the equatorial regions.  

 Different methods have been used: 

1. Measure the full width at half maximum of the line. 

2. Cross correlate with the spectrum of a star of known rotational 

velocity. 

3. Comparison with model atmospheres. 

4. Fourier transform. 

 
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 4.5 Observational determination 
 

 The Fourier transform g(σ) has zeros, the first of which is set by the 

value of veq sin i  

 Application to real situations: macro-turbulence and noise. 
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 4.5 Observational determination 
 Case of a binary consisting of two stars with very different 

rotational velocities: 

310 ± 20 km/s 

  66 ±   9 km/s 
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 V. Expanding spherical atmospheres 

 Radiative transfer in the continuum: 

1. Grey atmospheres. 

2. Feautrier method.  

 Radiative transfer in spectral lines: 

1. Optically thin spectral lines. 

2. Optically thick spectral lines: the Sobolev approximation. 

 Beyond the Sobolev approximation. 

 The effect of free electron scattering. 

 Structures in stellar winds. 
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 V. Expanding spherical atmospheres 

 The spectra of Wolf-Rayet, O and Of stars display the 
spectral signatures of stellar winds (P-Cygni profiles) 

 

 

 

 

 

 

 

 

 

 Stellar wind = combination of an important mass-loss rate 
with a fast expansion. Acceleration through radiation 
pressure in the UV lines. 
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 5.1 Radiative transfer in the continuum  

 The expansion of the wind has essentially no effect on the 
transfer of the radiation in the continuum. 

Dilution of continuum radiation in an 

extended atmosphere. 

Moments of the continuum radiation 

field in an extended atmosphere. 

At very large distance, all moments 

have the same limit: 
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 5.1 Radiative transfer in the continuum  

 Equation of  radiative transfer in spherical geometry: 

 

 

 with μ = cos θ 

 

 

 

 

 dτ = -κνρdr  

 

 

  

 

 



141 

 5.1 Radiative transfer in the continuum  

 Generalized Eddington factor: 

 

 

 tends towards 1/3 very deep in the atmosphere and towards 
1 in the outer layers of the atmosphere.  

 

 Solution of the transfer equation depends on the behaviour 
of the generalized Eddington factor. 

 
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 5.1 Radiative transfer in the continuum  

 Grey atmosphere in radiative equilibrium (J = S):  

 

 

 Hence, 

 

 

 

 In the outer regions of the atmosphere (f = 1) 

 

 

 
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 5.1 Radiative transfer in the continuum  

 In the inner regions of the atmosphere (f = 1/3) 

 

 

 Value of the constant of integration? Connect the two 
solutions assuming that the opacity varies as some negative 
power of r.  

 
 
  

 for τ → ∞ 

 The solution hence becomes: 

 

  

 

 



144 

 5.1 Radiative transfer in the continuum  

 Temperature profile of an extended atmosphere in LTE 

(crude approximation): 

 

 

 

 

 Temperature decreases outwards and the spectral 

distribution appears “flatter” than for a plane-parallel 

atmosphere of same effective temperature. 

 
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 5.1 Radiative transfer in the continuum  

 Feautrier method: we introduce a new variable 

 

 with the sphericity parameter:  

 

 

 

 

 

  

 Resolution of this equation requires knowledge of  fν(r). 

 This problem is solved by numerically integrating the 
transfer equation along a straight line of impact parameter p. 

 

 } 
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 5.1 Radiative transfer in the continuum  

 

 

  

 

 Numerical resolution of the transfer equation along a 

straight line p = Cte. 

  

 

 

 

  knowledge of Iν(p, z) and numerical determination of  fν   

 
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 5.2 Radiative transfer in the lines  

 Consider a spherical atmosphere in radial expansion.  

 The Doppler shift in the observer’s frame is given by:  

  

 (p, z) coordinates: 

 

  

 

 

 

 Photons are observed at a wavelength λ0 shifted by the 

Doppler shift. 

observer at z → +∞ 
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 5.2 Radiative transfer in the lines  

 Spherical atmosphere in radial expansion: P-Cygni profiles.  
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 5.2 Radiative transfer in the lines  

 Optically thin atmosphere: each photon emitted immediately 

leaves the atmosphere.  

 Energy received by the observer located at z → +∞: 

 

 

 Emissivity depends on the density which depends on the 

position in the wind through the continuity equation: 

 

 

 Formulation of Doppler shift: 

 

& 

& 
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 5.2 Radiative transfer in the lines  

 Energy received by observer at z → +∞: 

 

 

 φ sharply peaked function  emission at Doppler shift χ 
forms near the surface with the “right” radial velocity in the 
observer’s frame of reference: vz isovelocity surfaces = locus 
of the points having the same radial velocity in the 
observer’s frame of reference (depends on velocity law!). 

 The emission at a given wavelength does not arise in a 
specific point, but rather over a surface of same vz. 

 In certain cases, a given sightline intersects the same 
isovelocity surface twice  coupling between the radiative 
transfer at these points. 
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 5.2 Radiative transfer in the lines  

 vz isovelocity surfaces. 
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 5.2 Radiative transfer in the lines  

 Optically thick atmosphere: the presence of a velocity 

gradient simplifies the resolution of the transfer equations 

(Sobolev approximation). 

 Optical depth from point (p, z) towards the observer at z → 

+∞: 

 

 

with 
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 5.2 Radiative transfer in the lines  

 The most important contributions to this integral arise from 

the points such that 

 

 i.e. the points of the iso-radial velocity surface. 

   
 

 Moreover, 
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 5.2 Radiative transfer in the lines  

 If the photon interaction region is small, 

with & 
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 5.2 Radiative transfer in the lines  

 Optical depth from an arbitrary point and along an arbitrary 

direction:  

 

 

 The general solution of the transfer equation...  

 

 

 ...can be simplified: 

where 
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 5.2 Radiative transfer in the lines  

 

 

 The mean intensity can now be computed via an integration 

over solid angle...  

 

 

 

 ...and one can express it in terms of the escape probabilities 

of the photons: 
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 5.2 Radiative transfer in the lines  

 

 The probability that a photon escapes from the interaction 
region is:  

 

 

 
 

 The probability that a photospheric photon enters the 
interaction region is: 

 

 

 

 To first order:  
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 5.2 Radiative transfer in the lines  

 Flux of the line as observed by an observer at infinity: 

 

 

 

 

 

 Allows to compute the line profiles in the framework of the 

Sobolev approximation. In general, the equations of 

statistical equilibrium must be solved because the 

atmosphere is not in LTE. 
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 5.3 Beyond the Sobolev approximation 

 CoMoving Frame (CMF) method allows to overcome the 

limitations of the Sobolev approximation when the velocity 

gradients are small. 

 However, the CMF is not an inertial frame of reference.  

 Complex method (especially because of the nLTE effects). 

 Currently, most popular approach for analysing the spectra 

of Wolf-Rayet and Of stars. 
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 5.3 Beyond the Sobolev approximation 

 Spectra of Wolf-Rayet stars: WN and WC sequences: 



161 

 5.3 Beyond the 

Sobolev 

approximation 

 Progression of the 

spectra as a function 

of the strength of the 

stellar wind: 
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 5.3 Beyond the Sobolev approximation 

 Analysis with CMFGEN of the spectrum of a WC star: 
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 5.4 Scattering by free electrons 

 Free electrons contribute significantly to the opacity of the stellar 

wind.  They produce notably the scattering wings in the profiles 

of strong emission lines.  



 The free electrons produce “red” wings for the emission: Auer & 

van Blerkom effect 

 Doppler shift of a photon at first scattering: χ = μ×(v/c) 
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On average:  

At the 2nd scattering event:  

 

 

 5.4 Scattering by free electrons 
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 5.5 Structures in the stellar winds 

 Are stellar winds really homogeneous and spherically 
symmetric? 

 

 

 

 

 

 

 
 

 Winds contain a huge number of small clumps of higher 
than average density.  

 This fragmentation must be taken into account to correctly 
evaluate the mass-loss rate. 

    ?     This is not the case!!! 
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 VI. Stellar magnetic fields 

 Stellar atmospheres and interiors contain highly ionized 
plasma where charged particles move around = ideal 
conditions for generation of magnetic fields, but how can we 
measure them? 

1. Polarization. 

2. The Zeeman effect 

3. Magnetic fields in stars 



167 

 6.1 Polarization 

 Polarization describes the evolution of the orientation of the 

electric field vector in an electromagnetic wave upon propagation. 

 

 

 

 

 

 

 Jones vector: 

 

 

 δ = 0 → linearly polarized, δ = ±π/2 → circularly polarized.  
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 6.1 Polarization 

 Jones vector formulation valid for a single wave. In optical 

astronomy, one rather deals with the specific intensity described by 

the Stokes vector: 

 

 

 

 

 I specific intensity, Q & U linear polarization, V circular 

polarization. 

 Modification of polarization properties described by Mueller 

matrices:   



169 

 6.1 Polarization 

 Polarization is also affected by free electron scattering, diffusion 

by interstellar dust grains and the instrument itself.  

 Any reflection or interaction that breaks the symmetry modifies the 

polarization. 

 Polarization levels of stars are often very low (less than a few 

percent). 

 (Spectro)Polarimetry is a photon starving discipline requiring 

telescopes and instruments with low instrumental polarization and 

large telescopes. 
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 6.2 The Zeeman effect 

 Pieter Zeeman discovered the splitting of spectral lines under the 

action of a magnetic field (1896). 
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 6.2 The Zeeman effect 

 Consider an energy level of total angular momentum 

 In the absence of a magnetic field, the level is 2 J + 1 times 

degenerate.  

 When an external magnetic field is applied, the Hamiltonian 

describing the energy needs to be modified by adding a term  

 

 

 

 The energy levels split into 2 J + 1 sublevels separated by  

 

 Where M = -J,-J +1,…,0,…,J – 1, J and the Landé factor is given 

by                                                                                                             
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 6.2 The Zeeman effect 

 The splitting of the energy levels leads to the splitting of the 

corresponding transitions:  

 

 Where ΔM = Mu – Ml = -1, 0, +1.  

 ΔM=0 corresponds to π components (no wavelength shift on 

average) which are linearly polarized for lines of sight 

perpendicular to the B field. 

 ΔM=±1 corresponds to the σ± components shifted in wavelength 

by                                       around λ0 and circularly polarized in 

opposite directions for lines of sight parallel to the B field and 

linearly polarized (perpendicular to the π component) for lines of 

sight perpendicular to the B field. 
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 6.2 The Zeeman effect 
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 6.2 The Zeeman effect 

 The Zeeman effect due to a stellar magnetic field can be detected 

either via line splitting or broadening (if the individual 

subcomponents are not resolved) or via spectropolarimetry.  
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 6.2 The Zeeman effect 

 The significance of the spectropolarimetric signature can be 

improved via Least Square Deconvolution. 

 Rotational modulation of the spectropolarimetric signal allows to 

map the magnetic field via Zeeman Doppler imaging.  
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 6.3 Stellar magnetic fields 

 First detection of solar magnetic field in sunspots by G.E. Hale in 

1908. 

 

 

 

 

 

 

 First detection of large-scale stellar magnetic field by H. Babcock 

in 1947. 

 Nowadays, modern spectropolarimeters: NARVAL @ TBL, 

ESPaDOnS @ CFHT and HARPSpol @ 3.6m ESO (La Silla). 
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 6.3 Stellar magnetic fields 

 Cool stars produce highly variable and 

complex magnetic fields via a dynamo 

effect at the interface between the 

differentially rotating core and the 

convective envelope. 
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 6.3 Stellar magnetic fields 

 Tepid and hot stars feature rather simple (dipolar) magnetic 

morphologies. Less than 10% of these stars have a detectable 

magnetic field. These stars lack the convective envelope and their 

fields are thought to be fossil.    
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Exercises 
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Exercise 1 

Comparison with Fig. 

1.11: spectral type F –G.  

Relative intensity of the 

H8 (3888 Å) line 

compared with Ca II H & 

K suggests spectral type 

F5 (Fig. 1.15). Weakness 

of Sr II λ 4077 indicates 

luminosity class V (Fig. 

1.15). 

Classification: F5V 
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Exercise 1 

Comparison with Fig. 

1.11: strength of G band 

(4300 Å) suggests spectral 

type K.  

Ratio Fe I λ 4325/ Hγ 

(4340 Å) suggests type K0 

or slightly later (Fig. 

1.15). Weakness of Sr II λ 

4077 indicates luminosity 

class V–III (Fig. 1.16). 

Classification: K0–1V– 

III with peculiarity: Hα 

(6563 Å) in emission. 
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Exercise 1 

Comparison with Fig. 

1.11: hot star (A – B). 

Presence of He I (λλ 4026, 

4388, 4471) lines reveals a 

B star. 

Ratio He I λ 4471/Mg II 

4481 indicates spectral 

type B5 – 7 (Fig. 1.14). 

Width of the Balmer lines 

indicates luminosity class 

V (Fig. 1.14). 

Classification: B5 – 7 V 



Comparison with Fig. 

1.11: hot star (A – B). 

Presence of He I (λλ 4026, 

4388, 4471) lines reveals a 

B star. 

Ratio He I λ 4471/Mg II 

4481 indicates spectral 

type B5 – 7 (Fig. 1.14). 

Width of the Balmer lines 

indicates luminosity class 

V (Fig. 1.14). 

Classification: B5 – 7 V 

Exercise 1 
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Exercise 1 

Comparison with Fig. 

1.11: spectral type F –G.  

Relative intensity of the 

H8 (3888 Å) line 

compared with Ca II H & 

K suggests spectral type 

F5 (Fig. 1.15). Weakness 

of Sr II λ 4077 indicates 

luminosity class V (Fig. 

1.15). 

Classification: F5V 
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Exercise 1 

Comparison with Fig. 

1.11: strength of G band 

(4300 Å) suggests spectral 

type K.  

Ratio Fe I λ 4325/ Hγ 

(4340 Å) suggests type K0 

or slightly later (Fig. 

1.15). Weakness of Sr II λ 

4077 indicates luminosity 

class V–III (Fig. 1.16). 

Classification: K0–1V– 

III with peculiarity: Hα 

(6563 Å) in emission. 
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Chapter 3 

 Source function at various wavelengths and as a function of 

the optical depth. 
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Chapter 3 

 Temperature as a function of the optical depth in an ETL 

atmosphere for different wavelengths. 



188 

Chapter 3 

 Opacity as a function of the wavelength at 3 different 

temperatures. 



189 

Chapter 5 

 Mean intensity of a grey atmosphere as a function of optical 

depth: comparison of the exact solution vs. Eddington 

approximation + Eddington approximation with Λτ  operator. 
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Chapter 5 

 Relative error on J(τ) for a grey atmosphere using the 

Eddington approximation without and with application of the 

Λτ operator 
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Chapter 5 

 Emerging intensity I+(0,μ) of a grey atmosphere. Exact 

solution vs. Eddington approximation or Eddington 

approximation combined with an application of the Λτ operator 


