Modelling climate and vegetation interactions Application to the study of paleoclimates and paleovegetations

Dissertation présentée par Alexandra-Jane Henrot en vue de l'obtention du grade de Docteur en Sciences

promoteur : G. Munhoven, co-promoteur : L. François

Liège, le 15 décembre 2010

Summary

- Modelling climate and vegetation interactions
- The Planet Simulator and CARAIB models
- Application 1: the Last Glacial Maximum
- Application 2: the Middle Pliocene
- Application 3: the Middle Miocene
- General conclusions and perspectives

Climate system: processes and interactions between the components of the climate system

3/60 A-J. Henrot Modelling climate and vegetation interactions

The atmosphere and the terrestrial biosphere: a coupled system interacting on a large range of time scales

200

Climate and vegetation interactions: biophysical processes

Vegetation = "crystallised, visible climate" (Köppen, 1936)

Climate and vegetation interactions: biophysical processes

Climate and vegetation interactions: biophysical processes

Vegetation impacts on climate: biophysical processes

9/60 A-J. Henrot Modelling climate and vegetation interactions

Climate and vegetation interactions: biogeochemical processes

Foley et al., 2003

Modelling the climate and vegetation interactions

- develop realistic climate and vegetation models,
- incorporate the two-way climate-vegetation interactions into coupled climate-vegetation models,
- model **past** climate and vegetation changes and better forecast near-**future** climate and vegetation changes.

Modelling the climate and vegetation interactions

- develop realistic climate and vegetation models,
- incorporate the two-way climate-vegetation interactions into coupled climate-vegetation models,
- model **past** climate and vegetation changes and better forecast near-**future** climate and vegetation changes.

Modelling the climate and vegetation interactions

- develop realistic climate and vegetation models,
- incorporate the two-way climate-vegetation interactions into coupled climate-vegetation models,
- model **past** climate and vegetation changes and better forecast near-**future** climate and vegetation changes.

Modelling the climate and vegetation interactions

- develop realistic climate and vegetation models,
- incorporate the two-way climate-vegetation interactions into coupled climate-vegetation models,
- model past climate and vegetation changes and better forecast near-future climate and vegetation changes.

Aims of the present work

Modelling climate and vegetation interactions

∜

- with the climate model Planet Simulator and the vegetation model CARAIB interacting through an equilibrium coupling procedure.
- Study the joint evolutions of climate and vegetation during three past periods: the Last Glacial Maximum, the Middle Pliocene and the Middle Miocene.

Aims of the present work

Modelling climate and vegetation interactions

- ₩
- with the climate model Planet Simulator and the vegetation model CARAIB interacting through an equilibrium coupling procedure.
- Study the joint evolutions of climate and vegetation during three past periods: the Last Glacial Maximum, the Middle Pliocene and the Middle Miocene.

Aims of the present work

Modelling climate and vegetation interactions

- ₽
- with the climate model Planet Simulator and the vegetation model CARAIB interacting through an equilibrium coupling procedure.
- Study the joint evolutions of climate and vegetation during three past periods: the Last Glacial Maximum, the Middle Pliocene and the Middle Miocene.

Planet Simulator CARAIB Interactions between the models

Models

13/60 A-J. Henrot Modelling climate and vegetation interactions

・ロト ・回ト ・ヨト ・ヨト

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Earth System Model of Intermediate Complexity (EMIC)

ATMOSPHERE PUMA-2 GCM Spectral Model (T21, T42) 10 Vertical Levels

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Earth System Model of Intermediate Complexity (EMIC)

200

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Earth System Model of Intermediate Complexity (EMIC)

E 996

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Planet Simulator CARAIB Interactions between the models

The **Planet Simulator** model

Planet Simulator CARAIB Interactions between the models

The CARAIB model (CARbon Assimilation In the Biosphere)

Dynamic Global Vegetation Model (DGVM)

Planet Simulator CARAIB Interactions between the models

The CARAIB model (CARbon Assimilation In the Biosphere)

Planet Simulator CARAIB Interactions between the models

Interactions between the models

Planet Simulator

Planet Simulator CARAIB Interactions between the models

Interactions between the models

- •diurnal amplitude of air temperature
- precipitation
- •percentage of sunshine hours
- •relative humidity
- wind speed

Planet Simulator CARAIB Interactions between the models

Interactions between the models

- precipitation
- •percentage of sunshine hours
- •relative humidity
- wind speed

Planet Simulator CARAIB Interactions between the models

Asynchronous equilibrium coupling of the Planet Simulator and CARAIB models

18/60 A-J. Henrot Modelling climate and vegetation interactions

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Applications

- 1. The Last Glacial Maximum
- 2. The Middle Pliocene
- 3. The Middle Miocene

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Application 1. The Last Glacial Maximum

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

The Last Glacial Maximum

21/60

) A-J. Henrot

Modelling climate and vegetation interactions

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments

Land surface cover change implications on LGM climate?

 \Rightarrow Series of sensitivity experiments with the Planet Simulator in order to analyse and isolate the climatic impacts of:

- the expansion of ice sheets,
- the modification of the topography on land,
- the reduction of the vegetation cover,
- the lowering of the atmospheric carbon dioxide concentration (from 280ppmv during the preindustrial time to 200ppmv at the LGM).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments

Land surface cover change implications on LGM climate?

 \Rightarrow Series of sensitivity experiments with the Planet Simulator in order to analyse and isolate the climatic impacts of:

- the expansion of ice sheets,
- the modification of the topography on land,
- the reduction of the vegetation cover,
- the lowering of the atmospheric carbon dioxide concentration (from 280ppmv during the preindustrial time to 200ppmv at the LGM).
The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments

Land surface cover change implications on LGM climate?

 \Rightarrow Series of sensitivity experiments with the Planet Simulator in order to analyse and isolate the climatic impacts of:

- the expansion of ice sheets,
- the modification of the topography on land,
- the reduction of the vegetation cover,
- the lowering of the atmospheric carbon dioxide concentration (from 280ppmv during the preindustrial time to 200ppmv at the LGM).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments

Land surface cover change implications on LGM climate?

 \Rightarrow Series of sensitivity experiments with the Planet Simulator in order to analyse and isolate the climatic impacts of:

- the expansion of ice sheets,
- the modification of the topography on land,
- the reduction of the vegetation cover,
- the lowering of the atmospheric carbon dioxide concentration (from 280ppmv during the preindustrial time to 200ppmv at the LGM).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments

Land surface cover change implications on LGM climate?

 \Rightarrow Series of sensitivity experiments with the Planet Simulator in order to analyse and isolate the climatic impacts of:

- the expansion of ice sheets,
- the modification of the topography on land,
- the reduction of the vegetation cover,
- the lowering of the atmospheric carbon dioxide concentration (from 280ppmv during the preindustrial time to 200ppmv at the LGM).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Land-sea distribution and topography over the ice sheet mask for the CTRL and the LGM configurations

Henrot et al., 2009

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Vegetation cover changes: CARAIB biome distributions for the CTRL and the LGM experiments

24/60 A-J. Henrot Modelling climate and vegetation interactions

Henrot et al., 2009

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Surface temperature and precipitation anomalies for the LGM experiment with all the boundary condition changes

-5.2°C

Henrot et al., 2009

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Surface temperature and precipitation differences for the series of sensitivity experiments

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Impacts on surface temperature

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Impacts on precipitation

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Comparison to the results of previous modelling studies

Simulation	Global ΔT	ICE+ORO	CO ₂	VEG
This study	E 2ºC	2.6°C	2°C	1.2°C
This study	-5.2 C	-2.0 C	-2 C	-1.5 C
Jahn et al., 2005 Ganopolski, 2003	-5.1°C	-3°C -3°C	-1.5°C -1.2°C	-0.7°C -0.6°C
PMIP1	-2 to -6°C*			
PMIP2	-3.6 to -5.7°C*			

*(no vegetation change considered)

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Consistency with paleo data

30/60 A-J. Henrot Modelling climate and vegetation interactions

T**he Last Glacial Maximum** The Middle Pliocene The Middle Miocene

Last Glacial Maximum results

- the dominant cooling and drying effect of the ice sheet expansion on the LGM climate,
- the large changes that occured in the vegetation cover at the LGM: expansion of desert and grassland ecosystems at the expense of forest ecosystems,
- the contribution of the vegetation cover change to the maintaining of cold and dry climatic conditions at the LGM.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Last Glacial Maximum results

- the dominant cooling and drying effect of the ice sheet expansion on the LGM climate,
- the large changes that occured in the vegetation cover at the LGM: expansion of desert and grassland ecosystems at the expense of forest ecosystems,
- the contribution of the vegetation cover change to the maintaining of cold and dry climatic conditions at the LGM.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Last Glacial Maximum results

- the dominant cooling and drying effect of the ice sheet expansion on the LGM climate,
- the large changes that occured in the vegetation cover at the LGM: expansion of desert and grassland ecosystems at the expense of forest ecosystems,
- the contribution of the vegetation cover change to the maintaining of cold and dry climatic conditions at the LGM.

T**he Last Glacial Maximum** The Middle Pliocene The Middle Miocene

Last Glacial Maximum results

- the dominant cooling and drying effect of the ice sheet expansion on the LGM climate,
- the large changes that occured in the vegetation cover at the LGM: expansion of desert and grassland ecosystems at the expense of forest ecosystems,
- the contribution of the vegetation cover change to the maintaining of cold and dry climatic conditions at the LGM.

Climate and vegetation interactions Models Applications and results

The Last Glacial Maximum **Fhe Middle Pliocene** The Middle Miocene

Application 2. The Middle Pliocene

Climate and vegetation interactions Models Applications and results

The Middle Pliocene

33/60

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

The MPWP: an analogue for the climate of the twenty-first century?

34/60 A-J. Henrot Modelling climate and vegetation interaction

୬୦୯

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

PRISM 3D boundary conditions for the MPWP

MPWP simulation experiment	
Orbital configuration	present-day
CO ₂	405 ppmv
Topography	PRISM3D
Land-sea and land-ice masks	PRISM3D
SSTs and sea-ice	PRISM3D
Vegetation cover	PRISM3D (BIOME4)

Γhe Last Glacial Maximum **Γhe Middle Pliocene** Γhe Middle Miocene

PRISM 3D boundary conditions for the MPWP

MPWP simulation experiment	
Orbital configuration	present-day
CO ₂	405 ppmv
Topography	PRISM3D
Land-sea and land-ice masks	PRISM3D
SSTs and sea-ice	PRISM3D
Vegetation cover	PRISM3D (BIOME4)

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

MPWP annual mean surface air temperature and precipitation anomalies simulated by the Planet Simulator

The Last Glacial Maximum **Fhe Middle Pliocene** The Middle Miocene

Comparison to the results of previous modelling studies

Simulation	Global ΔT	Global ΔPRC	PRISM version
This study	+2.2°C	+3.5%	PRISM3D
Haywood et al., 2000	$+1.9^{\circ}C$	+4%	PRISM2
Haywood and Valdes, 2004	$+3^{\circ}C$	+6%	PRISM2
Jiang et al., 2005	$+2.6^{\circ}C$	+4%	PRISM2

Effect of the PRISM3D vegetation on the MPWP climate

Precipitation (mm/day)

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

CARAIB biome distributions for the preindustrial and the Pliocene experiments

90

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

CARAIB biome distributions for the preindustrial and the Pliocene experiments

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

CARAIB biome distributions for the preindustrial and the Pliocene experiments

90

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Pliocene results

- Globally warmer and wetter than present-day climate conditions simulated for the Middle Pliocene
- Reduction of the latitudinal temperature gradient in good agreement with previous modelling studies (Haywood et al., 2009; Haywood and Valdes, 2004)
- Shift of boreal forest to higher latitudes and reduction of tundra and desert ecosystems in good agreement with previous vegetation reconstructions (Haywood and Valdes, 2006; Salzmann et al., 2008)

 \Rightarrow Need for a more accurate comparison of climate and vegetation results with climate and vegetation modelling results or data-based reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Pliocene results

- Globally warmer and wetter than present-day climate conditions simulated for the Middle Pliocene
- Reduction of the latitudinal temperature gradient in good agreement with previous modelling studies (Haywood et al., 2009; Haywood and Valdes, 2004)
- Shift of boreal forest to higher latitudes and reduction of tundra and desert ecosystems in good agreement with previous vegetation reconstructions (Haywood and Valdes, 2006; Salzmann et al., 2008)

 \Rightarrow Need for a more accurate comparison of climate and vegetation results with climate and vegetation modelling results or data-based reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Pliocene results

- Globally warmer and wetter than present-day climate conditions simulated for the Middle Pliocene
- Reduction of the latitudinal temperature gradient in good agreement with previous modelling studies (Haywood et al., 2009; Haywood and Valdes, 2004)

 Shift of boreal forest to higher latitudes and reduction of tundra and desert ecosystems in good agreement with previous vegetation reconstructions (Haywood and Valdes, 2006; Salzmann et al., 2008)

⇒ Need for a more accurate comparison of climate and vegetation results with climate and vegetation modelling results or data-based reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Pliocene results

- Globally warmer and wetter than present-day climate conditions simulated for the Middle Pliocene
- Reduction of the latitudinal temperature gradient in good agreement with previous modelling studies (Haywood et al., 2009; Haywood and Valdes, 2004)
- Shift of boreal forest to higher latitudes and reduction of tundra and desert ecosystems in good agreement with previous vegetation reconstructions (Haywood and Valdes, 2006; Salzmann et al., 2008)

⇒ Need for a more accurate comparison of climate and vegetation results with climate and vegetation modelling results or data-based reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Pliocene results

- Globally warmer and wetter than present-day climate conditions simulated for the Middle Pliocene
- Reduction of the latitudinal temperature gradient in good agreement with previous modelling studies (Haywood et al., 2009; Haywood and Valdes, 2004)
- Shift of boreal forest to higher latitudes and reduction of tundra and desert ecosystems in good agreement with previous vegetation reconstructions (Haywood and Valdes, 2006; Salzmann et al., 2008)

 \Rightarrow Need for a more accurate comparison of climate and vegetation results with climate and vegetation modelling results or data-based reconstructions.

Climate and vegetation interactions Models Applications and results

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Application 3. The Middle Miocene

Climate and vegetation interactions Models Applications and results

The Middle Miocene

42/60

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

The climatic optimum of the Middle Miocene

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments and boundary conditions

Simulation	CO ₂	Ocean	Ice	Торо	Veg
CTRL	280ppmv	ΡI	ΡI	ΡI	ΡI

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments and boundary conditions

Simulation	CO ₂	Ocean	lce	Торо	Veg
CTRL	280ppmv	ΡI	ΡI	ΡI	ΡI
MM1	280ppmv	MM	MM	ΡI	ΡI

Ocean heat transfer PI

MM

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments and boundary conditions

Simulation	CO ₂	Ocean	lce	Торо	Veg
CTRL	280ppmv	ΡI	ΡI	ΡI	ΡI
MM1	280ppmv	MM	MM	ΡI	ΡI
MM2	280ppmv	MM	MM	MM	ΡI

Topography PI

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments and boundary conditions

Simulation	CO ₂	Ocean	lce	Торо	Veg
CTRL	280ppmv	ΡI	ΡI	ΡI	ΡI
MM1	280ppmv	MM	MM	ΡI	ΡI
MM2	280ppmv	MM	MM	MM	ΡI
MM3	200ppmv	MM	MM	MM	ΡI
MM4	500ppmv	MM	MM	MM	ΡI

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Simulation experiments and boundary conditions

Simulation	CO ₂	Ocean	lce	Торо	Veg
CTRL	280ppmv	PI	ΡI	ΡI	ΡI
MM1	280ppmv	MM	MM	ΡI	ΡI
MM2	280ppmv	MM	MM	MM	ΡI
MM3	200ppmv	MM	MM	MM	ΡI
MM4	500ppmv	MM	MM	MM	ΡI
MM4-veg	500ppmv	MM	MM	MM	MM
MM2-veg	280ppmv	MM	MM	MM	MM

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Impacts of Miocene oceanic conditions and land-sea distribution

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Impacts of a lower topography on land

-0.3°C

+25 mm/yr

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

 $+2.6^{\circ}C$ (CO₂=500ppmv)

Impacts of various CO₂ concentrations

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Response of vegetation to MMCO climate and high CO_2 concentration

48/60 A-J. Henrot Modelling climate and vegetation interactions

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Response of vegetation to MMCO climate and high CO_2 concentration

48/60 A-J. Henrot Modelling climate and vegetation interactions

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Response of vegetation to MMCO climate and high CO_2 concentration

48/60 A-J. Henrot Modelling climate and vegetation interactions

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Response of vegetation to MMCO climate and high CO_2 concentration

Response of vegetation to MMCO climate and low CO_2 concentration

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Vegetation feedback under different CO₂ concentrations

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Comparison to the results of previous modelling studies

Simulation	CO ₂	Global ΔT	
This study	280ppmv	+0.7°C (including vegetation changes)	
This study	500ppmv	$+3.4^{\circ}C$ (including vegetation changes)	
Tong et al., 2009	355ppmv	+0.6°C	
Tong et al., 2009	700ppmv	+2.9°C	
You et al., 2009	700ppmv	+3.5°C	

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

Our results indicate that

• an increase of atmospheric CO₂ concentration, higher than the present-day one, is necessary to warm significantly the climate at the MMCO.

In agreement with paleo-atmospheric CO_2 reconstructions from stomatal frequency analysis suggesting more than 500 ppmv of CO_2 during the MMCO (Kürschner et al., 2008). However, the required warming may be due to processes not considered in our setup (e.g. full oceanic circulation, other greenhouse gases such as CH_4).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

Our results indicate that

• an increase of atmospheric CO₂ concentration, higher than the present-day one, is necessary to warm significantly the climate at the MMCO.

In agreement with paleo-atmospheric CO_2 reconstructions from stomatal frequency analysis suggesting more than 500 ppmv of CO_2 during the MMCO (Kürschner et al., 2008). However, the required warming may be due to processes not considered in our setup (e.g. full oceanic circulation, other greenhouse gases such as CH_4).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

Our results indicate that

 an increase of atmospheric CO₂ concentration, higher than the present-day one, is necessary to warm significantly the climate at the MMCO.

In agreement with paleo-atmospheric CO_2 reconstructions from stomatal frequency analysis suggesting more than 500 ppmv of CO_2 during the MMCO (Kürschner et al., 2008).

However, the required warming may be due to processes not considered in our setup (e.g. full oceanic circulation, other greenhouse gases such as CH₄).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

Our results indicate that

• an increase of atmospheric CO₂ concentration, higher than the present-day one, is necessary to warm significantly the climate at the MMCO.

In agreement with paleo-atmospheric CO_2 reconstructions from stomatal frequency analysis suggesting more than 500 ppmv of CO_2 during the MMCO (Kürschner et al., 2008). However, the required warming may be due to processes not considered in our setup (e.g. full oceanic circulation, other greenhouse gases such as CH_4).

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene climate results

- the reduction of the topography on land
 - induces significant temperature increases on the continents,
 - disturbs the precipitation distribution.
- the vegetation changes
 - contribute to maintain the warmer and wetter climate at the MMCO,
 - help to reconcile the model results and the proxy-based climate reconstructions.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO₂ concentration is in better agreement with proxy-based vegetation reconstructions. The vegetation feedbacks at 500 and 280 ppmv are comparable in

terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO₂ concentration is in better agreement with proxy-based vegetation reconstructions.

The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO₂ concentration is in better agreement with proxy-based vegetation reconstructions. The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO₂ concentration is in better agreement with proxy-based vegetation reconstructions. The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO_2 concentration is in better agreement with proxy-based vegetation reconstructions.

The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO_2 concentration is in better agreement with proxy-based vegetation reconstructions. The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

The Last Glacial Maximum The Middle Pliocene The Middle Miocene

Middle Miocene vegetation results

Our results indicate that

- under warmer and more humid conditions
 - warm forest types expand at middle latitudes,
 - desert and semi-desert areas are reduced.

The vegetation produced under high CO_2 concentration is in better agreement with proxy-based vegetation reconstructions.

The vegetation feedbacks at 500 and 280 ppmv are comparable in terms of magnitude.

General conclusions and perspectives

Conclusions and perspectives

55/60 A-J. Henrot Modelling climate and vegetation interactions

- This work highlight the importance to take into account climate-vegetation interactions in paleoclimate and paleovegetation modelling.
- The vegetation changes that occurred during the past periods studied here significantly impact climate.
- The vegetation feedbacks help to improve the comparison of model results to proxy-based reconstructions for the studied periods.

- This work highlight the importance to take into account climate-vegetation interactions in paleoclimate and paleovegetation modelling.
- The vegetation changes that occurred during the past periods studied here significantly impact climate.
- The vegetation feedbacks help to improve the comparison of model results to proxy-based reconstructions for the studied periods.

- This work highlight the importance to take into account climate-vegetation interactions in paleoclimate and paleovegetation modelling.
- The vegetation changes that occurred during the past periods studied here significantly impact climate.
- The vegetation feedbacks help to improve the comparison of model results to proxy-based reconstructions for the studied periods.

- This work highlight the importance to take into account climate-vegetation interactions in paleoclimate and paleovegetation modelling.
- The vegetation changes that occurred during the past periods studied here significantly impact climate.
- The vegetation feedbacks help to improve the comparison of model results to proxy-based reconstructions for the studied periods.
- Improvement of the coupling procedure between Planet Simulator and CARAIB.
- Improvement of the Planet Simulator model (oceanic circulation, atmospheric trace gases, ...).
- Improvement of the CARAIB model (PFT classification, fire module, dispersion, ...).

- Improvement of the coupling procedure between Planet Simulator and CARAIB.
- Improvement of the Planet Simulator model (oceanic circulation, atmospheric trace gases, ...).
- Improvement of the CARAIB model (PFT classification, fire module, dispersion, ...).

- Improvement of the coupling procedure between Planet Simulator and CARAIB.
- Improvement of the Planet Simulator model (oceanic circulation, atmospheric trace gases, ...).
- Improvement of the CARAIB model (PFT classification, fire module, dispersion, ...).

- Improvement of the coupling procedure between Planet Simulator and CARAIB.
- Improvement of the Planet Simulator model (oceanic circulation, atmospheric trace gases, ...).
- Improvement of the CARAIB model (PFT classification, fire module, dispersion, ...).

General perspectives 2

- Applications of Planet Simulator and CARAIB models to other past periods of interest, such as the Holocene (11.7 kyr BP to present), the Paleocene-Eocene Thermal Maximum (55.8 Ma) or the Eocene-Oligocene transition (33.9 Ma), ...
- Application of a more systematic methodology to compare the vegetation model results to proxy-based vegetation reconstructions (François et al., accepted).

•

General perspectives 2

- Applications of Planet Simulator and CARAIB models to other past periods of interest, such as the Holocene (11.7 kyr BP to present), the Paleocene-Eocene Thermal Maximum (55.8 Ma) or the Eocene-Oligocene transition (33.9 Ma), ...
- Application of a more systematic methodology to compare the vegetation model results to proxy-based vegetation reconstructions (François et al., accepted).

•

General perspectives 2

- Applications of Planet Simulator and CARAIB models to other past periods of interest, such as the Holocene (11.7 kyr BP to present), the Paleocene-Eocene Thermal Maximum (55.8 Ma) or the Eocene-Oligocene transition (33.9 Ma), ...
- Application of a more systematic methodology to compare the vegetation model results to proxy-based vegetation reconstructions (François et al., accepted).

• ...

General perspectives 2

- Applications of Planet Simulator and CARAIB models to other past periods of interest, such as the Holocene (11.7 kyr BP to present), the Paleocene-Eocene Thermal Maximum (55.8 Ma) or the Eocene-Oligocene transition (33.9 Ma), ...
- Application of a more systematic methodology to compare the vegetation model results to proxy-based vegetation reconstructions (François et al., accepted).

• ...

Global PFTs classification (15 types)

GLOBAL PFT CLASSIFICATION

Subtropical PFT thresholds are defined according to present distribution in south-eastern Asia and North America

1 C3 grass
all C3 herbaceous plants
2 C4 grass
all C4 herbaceous plants
3 Needleleaved evergreen boreal/temperate cold
Cupressaceae, Juniperus, Juniperus communis (BAG4)
Abies (BAG 5)
Picea abies, Pinus, Pinus sylvestris (BAG 6)
4 Needleleaved evergreen temperate cool
Abies Alba, Taxus (BAG 2)
Chamaecyparis; Picea omorika, Pseudotsuga menziesi, Sequoia sempervirens,
Thuja orientalis, Tsuga diversifolia
5 Needleleaved evergreen temperate dry warm
Cedrus, Pinus halepensis, Pinus pinaster (BAG 1)
Cupressus, Libocedrus, Tetraclinis
6 Needleleaved evergreen temperate perhumid warm
SUB-TROPICAL: Sciadopitys, Cathaya, Keteleeria, Taiwania, Torreya, Athrotaxis
7 Needleleaved summergreen boreal/temperate cold
Larix decidua (BAG 7)
8 Needleleaved summergreen temperate warm
SUB-TROPICAL : Taxodium, Glyptostrobus
9 Broadleaved evergreen temperate dry warm
Olea eur, Pistacia, Phillyrea, Quercus ilex, Quercus suber (BAG 8)
Arbutus, Dalbergia, Ocotea, Quercus troyana
10 Broadleaved evergreen temperate perhumid warm
SUB-TROPICAL : Alangium, Castanopsis, Fatsia japonica, Gordonia, Lindera,
Magnolia virginiana, Neolitsea, Reevesia, Sassafras, Symplocos yunnanensis, Persea indic
11 Broadleaved summergreen boreal/temperate cold
Alnus, Alnus glutinosa, Corylus avellana, Quercus, Quercus robur, Populus, Tilia (BAG 12)
Betula, Salix (BAG 13)
12 Broadleaved summergreen temperate cool
Acer campestre, Carpinus betulus, Fagus sylvatica, Tilia platyphyllos (BAG 10)
Acer, Fraxinus excelsior, Tilia cordata, Ulmus (BAG 11)
Aesculus rubicunda, Populus cathayana, Quercus castaneaetolia, Quercus lobata,
Tilia japonica, Tilia piatypnylios, Ulmus davidiana
13 Broadleaved summergreen temperate warm
Castanea, Jugians, Ostrya, Quercus pubescens (BAG 9)
Craigia, Diospyros lotos, Halesia, Elquidambar formosana, Quercus bentramin
14 Broadleaved raingreen tropical
Acacia, Bursera, Dendropanax, Gironniera, Punica
Annual Orginal Constant Constant Manufactor Classific Zankaralla
Annona, bornbax, bursera, cassine, cupania, Monotes, Sterculla, Zenkerella