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vegetation interactions: biophysical processes

Changes in climate
affect vegetation cover
through changes in
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sprecipitation
esolar radiatio
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“crystallised, visible climate” (Koppen, 1936)
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vegetation interactions: biophysical processes
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pacts on climate: biophysical processes

Evapotranspiration

Transmitted heat
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limate and vegetation interactions: biogeochemical

plant respiration,
disturbances,
land use
photosynthesis

Atmospheric CO,

litterfall

Foley et al., 2003
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Climate and vegetation interactions

lelling the climate and vegetation interactions

Recent efforts have been made to
o develop realistic climate and vegetation models,

o incorporate the two-way climate-vegetation interactions into
coupled climate-vegetation models,

o model past climate and vegetation changes and better
forecast near-future climate and vegetation changes.
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Climate and vegetation interactions

s of the present work

Modelling climate and vegetation interactions

4

o with the climate model Planet Simulator and the vegetation
model CARAIB interacting through an equilibrium coupling
procedure.

o Study the joint evolutions of climate and vegetation during
three past periods: the Last Glacial Maximum, the Middle
Pliocene and the Middle Miocene.
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Models Planet Simulator
CARAIB
Interactions between the models

€ CARAIB model (cARbon Assimilation In the Biosphere)
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Models

equilibrium coupling of the Planet Simulator
odels

ITERATION 1 ITERATION 2 ITERATION 3
\Vegetation parameters| ...continuing the
X derived from the . iterations until a climate-
Planet Simulator equilibrium run of Planet Simulator vegetation equilibrium
the vegetation model state is reached

Climatic inputs derived
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of the climate model
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The Last Glacial Maximum
The Middle Pliocene
The Middle Miocene

1. The Last Glacial Maximum
2. The Middle Pliocene
3. The Middle Miocene
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Land surface cover change implications on LGM climate?

= Series of sensitivity experiments with the Planet Simulator in
order to analyse and isolate the climatic impacts of:
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Climate and vegetation interactions
Models

Applications and results
Conclusions and perspectives

Land surface cover change implications on LGM climate?

= Series of sensitivity experiments with the Planet Simulator in
order to analyse and isolate the climatic impacts of:

the expansion of ice sheets,
the modification of the topography on land,
the reduction of the vegetation cover,

the lowering of the atmospheric carbon dioxide concentration
(from 280ppmv during the preindustrial time to 200ppmv at
the LGM).
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Applications and results

bution and topography over the ice sheet
TRL and the LGM configurations
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The Last Glacial Maximum
The Middle Pliocene

Applications and results The Middle Miocene

etation cover changes: CARAIB biome distributions fo
CTRL and the LGM experiments
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erature and precipitation anomalies for the
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ts on precipitation

The Last Glacial Maximum
The Middle Pliocene
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Applications and results

he results of previous modelling studies

Simulation Global AT ICE+ORO  CO», VEG
This study -5.2°C -2.6°C -2°C -1.3°C
Jahn et al., 2005 -5.1°C -3°C -1.5°C  -0.7°C
Ganopolski, 2003 -3°C -1.2°C -0.6°C
PMIP1 -2 to -6°C*

PMIP2 -3.6 to -5.7°C*

*(no vegetation change considered)
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sistency with paleo data

The Last Glacial Maximum
The Middle Pliocene
The Middle Miocene
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Climate and vegetation interactions
Models

Applications and results
Conclusions and perspectives

Our results highlight

the dominant cooling and drying effect of the ice sheet
expansion on the LGM climate,

the large changes that occured in the vegetation cover at the
LGM: expansion of desert and grassland ecosystems at the
expense of forest ecosystems,

the contribution of the vegetation cover change to the
maintaining of cold and dry climatic conditions at the LGM.
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The Middle Pliocene
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dary conditions for the MPWP

MPWP simulation experiment

Orbital configuration

CO,

Topography

Land-sea and land-ice masks
SSTs and sea-ice
Vegetation cover

present-day

405 ppmv

PRISM3D

PRISM3D

PRISM3D
PRISM3D (BIOME4)

Pliocene - Preindustrial Sea Surface Temperature

/60

2fw  ePw o 60°E 120 186

-150-100-80 60 -40 201005 00 05 10 20 40 60 80 100150
Sea Surface Temperatuf€)

A-J. Henrot



Applications and results

dary conditions for the MPWP

MPWP simulation experiment
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| mean surface air temperature and
nomalies simulated by the Planet Simulator
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he results of previous modelling studies

Simulation Global AT Global APRC PRISM version
This study +2.2°C +3.5% PRISM3D
Haywood et al., 2000 +1.9°C +4% PRISM2
Haywood and Valdes, 2004 +3°C +6% PRISM2
Jiang et al., 2005 +2.6°C +4% PRISM2
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RISM3D vegetation on the MPWP climate
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RAIB biome distributions for the preindustrial and the
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o Globally warmer and wetter than present-day climate
conditions simulated for the Middle Pliocene

o Reduction of the latitudinal temperature gradient in good
agreement with previous modelling studies (Haywood et al.,
2009; Haywood and Valdes, 2004)

o Shift of boreal forest to higher latitudes and reduction of
tundra and desert ecosystems in good agreement with
previous vegetation reconstructions (Haywood and Valdes,
2006; Salzmann et al., 2008)
= Need for a more accurate comparison of climate and
vegetation results with climate and vegetation modelling
results or data-based reconstructions.
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he results of previous modelling studies

Simulation CO, Global AT

This study 280ppmv  +0.7°C (including vegetation changes)
This study 500ppmv  +3.4°C (including vegetation changes)
Tong et al., 2009 355ppmv +0.6°C

Tong et al., 2009 700ppmv +2.9°C

You et al., 2009  700ppmv +3.5°C
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Our results indicate that

o an increase of atmospheric CO> concentration, higher than
the present-day one, is necessary to warm significantly the
climate at the MMCO.

In agreement with paleo-atmospheric CO, reconstructions from
stomatal frequency analysis suggesting more than 500 ppmv of
CO» during the MMCO (Kiirschner et al., 2008).

However, the required warming may be due to processes not
considered in our setup (e.g. full oceanic circulation, other
greenhouse gases such as CHy).
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e results

Other mechanisms to consider:
o the reduction of the topography on land

o induces significant temperature increases on the continents,
o disturbs the precipitation distribution.
o the vegetation changes

o contribute to maintain the warmer and wetter climate at the
MMCO,

o help to reconcile the model results and the proxy-based climate
reconstructions.
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Our results indicate that
o under warmer and more humid conditions

o warm forest types expand at middle latitudes,
o desert and semi-desert areas are reduced.

The vegetation produced under high CO, concentration is in better
agreement with proxy-based vegetation reconstructions.

The vegetation feedbacks at 500 and 280 ppmv are comparable in
terms of magnitude.

= Need for a more accurate comparison to vegetation
reconstructions.
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o This work highlight the importance to take into account
climate-vegetation interactions in paleoclimate and
paleovegetation modelling.

o The vegetation changes that occurred during the past periods
studied here significantly impact climate.

o The vegetation feedbacks help to improve the comparison of
model results to proxy-based reconstructions for the studied
periods.
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o Improvement of the coupling procedure between Planet
Simulator and CARAIB.

@ Improvement of the Planet Simulator model (oceanic
circulation, atmospheric trace gases, ...).

o Improvement of the CARAIB model (PFT classification, fire
module, dispersion, ...).
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