
Stellar Structure and Evolution

1 Objectives of the course and links with other �elds

In this course of stellar structure and evolution, we deeply study the internal physical
characteristics of stars and their time evolution. In our exploration of this internal
structure, we focus on the understanding of the underlying physical processes. As
we will see stars are remarkable laboratories of fundamental physics :
� Stars as laboratory of quantum physics :
In stars, the microscopic and macroscopic world are put in close contact. First, the
interaction between matter and radiation determines the e�ciency of energy trans-
port from their core to the surface. This interaction is explained and quanti�ed in
quantum physics by the perturbation of electronic states due to an electromagnetic
wave.

� Stars as laboratory of nuclear physics :
Most of the time, the main source of energy in stars comes from nuclear reactions
in their core. As the star evolves, these fusion reaction synthesize heavier nuclei.
Stars are the great creators of the universe, all nuclei beyond hydrogen and helium
(carbon, oxygen, nitrogen, iron, . . .) were created in the core of stars one day.

� Stars as laboratories of thermodynamics and statistical physics :
As we will see, temperature and entropy conditions are extreme inside stars. Hence,
a huge number of states is possible for the gas of free nuclei, electron and pho-
tons, a statistical equilibrium is established for the occupation of each state by
each particle called thermodynamic equilibrium. The powerful tools of statistical
physics can be used to describe this equilibrium and make the bridge between
the microscopic and macroscopic worlds. As an example, purely quantum e�ects
such as the Pauli exclusion principle can have a major impact on the structure,
evolution and stability of stars.

� Finally, macroscopic hydrodynamic processes also play a key role in stars.
The most signi�cant of them is turbulent convection. It plays a key role in the
transport of energy and chemical elements throughout the star.
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2 Luminosity, e�ective temperature, magnitudes, Hertzsprung-

Russel diagram

We begin with basic de�nitions.

2.1 Luminosity - L

The luminosity of a star is the total power radiated by it.

As an example, the luminosity of the Sun can be determined as follows. The Sun-
Earth distance d can be measured with a very high precision. The �ux coming from
the Sun reaching the top of the Earth's atmosphere can also be measured. The main
di�culty is that photometers are sensitive to a restricted part of the electromagnetic
spectrum. An extrapolation is thus required to estimate the �ux integrated over all
wavelengths, which is called the bolometric �ux. The average bolometric �ux of the
Sun, called the solar constant is : C� =

∫∞
0 Cλdλ = 1367 W/m2.

The solar luminosity is obtained by multiplying it by the surface of a sphere of radius
d :

L� = 4πd2C� = 3.828× 1026 W = 3.828× 1033erg/s (1)

Stars have a very wide range of possible luminosities, from less than 10−3L� to more
than 106L� !

2.2 Apparent magnitude - m

In astronomy, we use a logarithmic scale for the brightness of celestial objects. The
apparent magnitude is de�ned as :

m = −2.5 log(b) + C , (2)

where b is the bolometric �ux of the object as measured at the top of the Earth's
atmosphere. The constant C appearing in this equation was originally chosen such
that the apparent magnitude of the star Vega is zero.

The default of the apparent magnitude is that it depends on the distance of the
object. It is not a function of the luminosity alone, it is not absolute. This leads us
to another de�nition.

2



2.3 Absolute magnitude

The absolute magnitude M of a star is the apparent magnitude that it would have
if were viewed from a reference distance of 10 parsecs. Noting B the bolometric �ux
that it would have at this reference distance, we have :

M = −2.5 log(B) + C (3)

We have :
L = 4π(10 ∗ pc)2B = 4π(dpc ∗ pc)2b, (4)

where pc is the length of a parsec, and dpc is the distance in parsecs, and thus :

M −m = 5− 5 log(dpc) . (5)

The determination of the absolute magnitude requires thus the measurement of the
apparent magnitude and the distance. The latter is usually di�cult to measure with
precision. The absolute bolometric magnitude of the Sun is Mbol,� = 4.74.

MV = +17 à MV = −10.

2.4 Intensity of radiation

Photons propagate in di�erent directions. The intensity (of radiation) I is a measure
of the distribution of radiant heat �ux per unit area and solid angle, in a particular
direction. More precisely, consider an in�nitesimal set of directions around ~n, corres-
ponding to the solid angle dω. I dω is then the heat �ux of photons propagating in
these directions (through a perpendicular surface). In general, the intensity depends
on the considered direction ~n, so it is a function I(~r, ~n, t). Consider the interior of
a spherically symetric star. I note θ the angle to the radial direction and µ = cos θ.
The �ux and intensities at a given point of the star are then related as follows :

F = 2π
∫ 1

−1
µ I(µ) dµ . (6)

Indeed, F is obtained by projecting the intensity on the radial direction (multiplica-
tion by µ) and integrating over all directions (2πdµ is the solid angle of the directions
between θ and θ + dθ). If the intensity does not depend on ~n, the radiation �eld
is said to be isotropic. From eq. 6, we see that the the �ux is zero when the ra-
diation �eld is purely isotropic. As we will see, the radiation �eld is quasi-isotropic
in stellar interiors. However, the outside intensity is very slightly larger than the
inside intensity and this is su�cient to create a signi�cant �ux. Near the surface, in
the stellar atmosphere, the radiation �eld becomes more and more anisotropic, with
inside intensity tending to zero.
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2.5 Monochromatic �ux and intensity

Radiation has a spectral nature. The monochromatic �ux Fλ (resp. intensity) is a
measure of the density of radiant heat �ux (resp. intensity) per unit wavelength, at a
given wavelength.

∫ λ2
λ1
Fλdλ is thus the radiant heat �ux in the interval of wavelengths

[λ1, λ2].

2.6 Black body radiation

Statistical physics tells us that in an opaque gas at local thermodynamic equilibrium,
the occupation of the di�erent states of energy by photons follows the Planck law of
a black body. The monochromatic �ux radiated by a black body of temperature T
is :

Fλ =
2πhc2

λ5

1

exp(hc/(λkT ))− 1
, (7)

Integrating over all wavelengths gives the Stefan-Boltzmann law :

F =
∫ ∞

0
Fλdλ = σT 4. (8)

Dividing equations 7 and 8 by π (resp. by c/4) gives their analogs for the intensity
(resp. the density of radiation energy per unit volume).

Finally, the Wien law relates the temperature and the wavelength at the maximum
of the Planck spectrum :

λmax (cm) = 0.29/T (K) (9)

2.7 E�ective temperature

The radiation spectrum of stars is similar to black bodies. This leads us to the
de�nition of the e�ective temperature.

The e�ective temperature of a radiating body is the temperature that a black body
radiating the same �ux would have.

From the Stefan-Bolzmann law, we have by de�nition of the e�ective temperature
F = σT 4

eff or equivalently Teff ≡ (F/σ)1/4. And for a spherical body like a star :

L = 4πR2F = 4πR2σT 4
eff . (10)
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2.8 The Hertzsprung-Russell diagram

The Hertzsprung-Russel (HR) diagram is fundamental, allowing us to �nd our way
in the world of stars. It remains the main tool to test the theory of stellar evolution
through a comparison with observations.

We begin with the de�nition of the theoretical Hertzsprung-Russell diagram : its
abscissa is the logarithm of the e�ective temperature log Teff (increasing from right
to left ! !) and its ordinate is the logarithm of its luminosity in solar units log(L/L�).

Determining these two quantities from photometry and/or spectroscopy requires the
use of atmosphere models and bolometric corrections. The observational Hertzsprung-
Russell diagram avoids these sources of uncertainty. Its ordinate is the absolute
magnitude as measured in a given passband (usually corresponding to the visible V-
�lter around 540 nm) : MV . Its abscissa is a color index, the di�erence of magnitude
between two distinct passbands, for example mB − mV (Johnson �lters) or better
mb −my (Strömgren �lters).

The remarkable point is that stars with di�erent masses and stages of evolution
occupy di�erent places in the HR diagram.

2.8.1 Radii of stars

Stars can have very di�erent radii. The radius can directly be deduced from the
location of a star in the HR diagram. Indeed, taking the logarithm of equation 10
gives :

log(L/L�) = 2 logR + 4 log Teff + log(4πσ/L�) (11)

Stars with same radius are thus located along a straigth line in the HR diagram. The
top right part corresponds to giants (around 10 R�) and supergiants (up to hundreds
R�). The bottom left corresponds to the very small stars : the white dwarfs with
sizes similar to the Earth and densities around 1 ton/cm3 and the neutron stars with
radii around 10 km and huge densities around...

2.8.2 The Main Sequence

Most of the stars (≈ 90 %), including our Sun, occupy a strip going from the top left
(high Teff and L) to the bottom right (low Teff and L) part of the HR diagram, this
is the main sequence. These stars are at the same stage of their evolution : the phase
of core hydrogen burning. More precisely, a chain of nuclear reactions leads to the
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fusion of protons into helium nuclei in the core of these stars. The power produced
by these nuclear reactions is equal to the radiated power (the luminosity). Because
this phase is the longest during a stellar life, we understand why they are the most
numerous. Stars of small masses occupy the bottom part of the main sequence and
massive stars the upper part. This is a consequence of the mass-luminosity relation,
which will be established later in the course.

2.8.3 Red giants

After the main sequence phase, we will see that the core of a star contracts and, si-
multaneously, its envelope expands and its e�ective temperature decreases. Once the
increase of the radius is signi�cant, the star becomes a red giant. Typical red giants
in the phase of core helium burning have radii of about 10 R�. During this phase,
helium nuclei merge into carbon nuclei. During other phases of evolution and/or for
more massive stars, the radius can be even larger, reaching 100 to 1000 R� ! The
star is then called a supergiant.

2.8.4 White dwarfs

At the end of its life, after having been a red supergiant, our Sun will expel its
envelope and become a white dwarf. Nuclear reactions no longer occur and the star
is slowly cooling. The mean density of a white dwarf is of the order of a ton per cm3.
Their radii are about hundred times smaller than the Sun (�the earth's size). They
are thus located in the bottom left part of the HR diagram.

2.9 Chemical composition of stars

Just after the Big Bang, no nuclei heavier than helium had time to be synthesized. As
the consequence, hydrogen and helium remain by far the two most abundant nuclei
of the universe. This is in particular the case of the initial composition of stars.
In stellar physics, the hydrogen mass fraction is usually noted X, the helium mass
fraction Y and the mass fraction of all other elements (inproperly called metals
by stellar physicists) Z. In the envelope of our Sun, X ' 0.72 and Y ' 0.27.
Similar values are found for most other stars. During the main sequence, hydrogen
is progressively transformed into helium in the core. Later, during part of the red
giant phase, this helium is transformed into carbon and oxygen. The most massive
stars can synthesize heavier elements and �nally explode as supernovae, enriching
the interstellar medium with these new elements. New generations are formed from
this modi�ed medium, leading to a progressive enrichement of our galaxy. With a
metal mass fraction Z ' 0.015, our Sun is a star of population I, typical of the
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disk of our galaxy. The oldest stars of our galaxy, found in its halo and buldge were
formed from a medium much poorer in heavy elements, they are population II stars
with Z ' 0.0001 typically.

3 Equations of stellar structure

3.1 Hypotheses

Stars rotate, hence the centrifugal force deforms them (the polar radius is smaller
than the equatorial radius). Except when speci�ed, we neglect in this course this
e�ect and assume that stars have a spherical symmetry. We also neglect the impact of
magnetic �eld on their internal structure. The di�erent physical quantities : density,
pressure, temperature, energy �ux, chemical composition, . . .are assumed to depend
on 2 variables only : the distance to the centre and the time. In the �rst part of
these lecture notes, we mainly focus on the internal structure at a given time. In the
second part, the evolution of stars is considered.

3.2 Mass and density

We consider a very thin spherical shell of radius r , thickness δr and volume δV . By
de�nition of the density, the mass of the shell is δm = ρδV . At �rst order in δr, we
have δV = 4πr2δr and thus δm = 4πr2ρ δr. Dividing by δr and taking the limit for
δr → 0, we �nd the di�erential equation :

dm/dr = 4πr2ρ . (12)

In this equation, m(r) is the mass of the sphere of radius r inside the star. This
function increases from 0 at the centre to m(R) = M (the total mass) at the surface.
Knowing the density pro�le inside the star, the integration of equation 12 givesm(r) :

m(r) =
∫ r

0
4πr2ρdr. (13)

The average density is the ratio between the total mass and volume :

< ρ >= M/(4/3πR3) (14)

For the Sun, we have :

< ρ >�= M�/(4/3πR
3
�) ' 1.4× 103kg/m3, (15)

slightly larger than water density.

Exercices :

Determine m(r) for a model of constant density ρ0 and for a model with density
pro�le : ρ(r) = ρ0(R

2 − r2).
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3.3 Hydrostatic equilibrium

The Sun is not exploding or collapsing now. This implies that the resultant of the
force on each mass element must be zero. The same is valid in stars, except during
core collapses and explosions of Super-Novae. We isolate an in�nitesimal mass ele-
ment located at a distance r from the center. We assume that it has the form of
a small cylinder, with height in the radial direction δr and horizontal surface δA.
What are the forces exerted on this element ?

First, we have the contact forces exerted on its surface by the surrounding matter.
Viscous stress never plays a role at equilibrium. Because of the spherical symetry,
the pressure is just a function of r and the resultant of the forces is zero in the
horizontal plane. In the radial direction ~er, it is simply given by :

(P (r)− P (r + δr))δA = −δPδA. (16)

Second, the volume force due to gravity exerted by the sphere below is :

−g δm = −(Gm/r2) ρ δA δr. (17)

The sum of the contact forces and the volume force must be zero

−δPδA− (Gm/r2) ρ δA δr = 0 (18)

Dividing this expression by δA δr and taking the limit for δr → 0, we �nd the
di�erential equation :

dP/dr = −ρGm/r2. (19)

This is the di�erential form of the hydrostatic equilibrium equation. The mass m of
each sphere is usually a better independent variable than their radius. Indeed, the
mass can be assumed to be conserved (except in very massive stars and supergiants),
but not the radius. Dividing equation 19 by equation 12 gives :

dP/dm = −Gm/(4πr4) (20)

We now inegrate equation 19 from the distance r up to the stellar surface where the
pressure is assumed to be zero, this gives :

P (r) =
∫ R

r
ρ (Gm/r2) dr. (21)

The pressure at a given point of the star is thus equal to the weight of the gas column
of unitary section above it.

With a pressure lower than this weight, the star would be unable to support the
weight of the upper layers and it would collapse. On the contrary, with a pressure
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larger than the weight, these layers would be expelled. Equivalently, integrating the
equation 20 over the mass gives :

P (m) =
∫ M

m
Gm/(4πr4) dm. (22)

This equation is very useful. It shows that when the star contracts, the pressure
increases a lot and the contrary if it expands. From a simple dimensional analysis,
we get an order of estimate of the pressure in the deep layers of a star with known
mass and radius :

P ≈ GM2/R4. (23)

Dynamic time

We now brie�y consider the out of equilibrium case. Breaking the forces equilibrium
leads to the explosion or collapse of the star, but over which time-scale ? We just want
to have an order of magnitude, which allows us to make very crude simpli�cations.
Let's assume that we suppress the pressure and only keep the gravity. The stellar
surface would collapse with an acceleration GM/R2. Since the radius decreases, this
acceleration should increase, but we neglect that. The order of magnitude of the
time tdyn required to shrink into the center is then such that R/t2dyn ≈ GM/R2. This
gives the de�nition of the dynamic time :

tdyn =
√
R3/GM ∝< ρ >−1/2 . (24)

We obtained it through crude simpli�cations but the order of magnitude is valid. If
at a given time of the stellar life the hydrostatic equilibrium is broken, the time-scale
of the explosion, collapse or pulsations is given by the dynamic time. The dynamic
time of the Sun is : tdyn,� = 26 minutes.

Note that the dynamic time is also the appropriate time scale of dynamic phenomena
at larger scales. It is then more appropriate to relate it

Exercices :

- Determine the pressure at the center of a star od constant density, as a function
of its mass M and radius R.
- Search in the literature the dynamic time of a typical neutron star, white dwarf,
red giant, red supergiant, blue supergiant.

3.4 Fast rotation and hydrostatic equilibrium

In fast rotating stars, the approximation of spherical symetry is no longer valid. We
brie�y consider the centrifugal deformation of a star in this section. First, we must
rewrite the equilibrium equation. The resultant of the forces per unit mass is now
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equal to the centripetal acceleration. In the spherical symmetric case, the resultant
of the surface forces per unit mass was −(1/ρ)dP/dr ~er. Out of spherical symmetry,
it is no longer in the radial direction and reads −∇P/ρ. In the spherical symmetric
case, the gravitational force per unit mass was −Gm/r2 ~er. Out of spherical sym-
metry, it reads −∇φ, where φ is the gravitational potential. Finally, the centripetal
acceleration reads −Ω2s ~es where Ω is the angular rotation velocity (rad/s), s is the
distance from the rotation axis and ~es = ∇s. The Newton equation for a rotating
body reads thus in each point :

∇P/ρ = −∇φ+ Ω2s ~es = ~geff , (25)

where we introduced the e�ective gravity : the static gravity + the centrifugal term.
We clearly see in this equation that spherical symmetry is incompatible with rota-
tion.

A rigorous modeling of rotating star is still very di�cult (but some models begin
to appear...). However, if the rotation is cylindrical (Ω function of s only, that is
constant on cylinders), the geometry can be simpli�ed. Note that rigid rotation
(constant Ω) is a particular case of cylindrical rotation. To show that, we take the
rotational of eq. 25 :

∇× (Ω2s ~es) = ∇×
(

Ω2∇s2

2

)
=
∇Ω2 ×∇s2

2
= ∇×

(
∇P
ρ

)
= −∇ρ×∇P

ρ2
, (26)

where we used the properties∇×(a∇b) = ∇a×∇b and∇×(∇a) = 0. For cylindrical
rotation, ∇Ω2 and ∇s2 are coaligned along ~es, their vectorial product is thus zero.
The eq. 26 gives thus in this case : ∇ρ × ∇P = 0. The gradients are thus aligned,
the isobars and iso-density coincide. Moreover, as the �uid obeys an equation of
state relating temperature, pressure, density (see Chapter 4), these surfaces are also
isotherms (in chemically homogeneous regions). Finally, it should be noted that the
centrifugal force is the gradient of a potential for cylindrical rotation. This allows us
to de�ne the total potential (gravitational + centrifugal) as :

Ψ = φ−
∫ s

0
Ω2(s)sds . (27)

And the equilibrium equation reads simply :

∇P/ρ = −∇Ψ = ~geff (28)

The isobars are thus also equipotential (total). Taking the Laplacian of equation 27
gives from the Poisson equation :

∇2Ψ = 4πGρ− 2Ω2. (29)

E�cient numerical methods exist to solve equations 28 and 29 and thus determine
the form of the equipotentials.
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We can also associate to fast rotation the notion of critical velocity. Beyond this
critical velocity, the centrifugal force overcomes the gravitational attraction and the
star cannot maintain its cohesion. An order of magnitude of this critical velocity can
be obtained by equalizing at the equatorial surface the centripetal and gravitational
accelerations, in a spherical model :

Ω2R =
GM

R2
. (30)

Isolating the equatorial velocity gives :

Vcrit = ΩR =

√
GM

R
. (31)

In the simpli�ed model called Roche model, the gravitational potential is approxi-
mated by φ = −Gm/r. This would be the real potential at the radius r if the
whole mass m was concentrated in the center. For a star in rigid rotation, the total
potential is then approximated by :

Ψ(r, θ) = −Gm
r
− 1

2
Ω2r2 sin2 θ . (32)

The stellar surface is an equipotential. We note R(θ) the distance from the center
to the surface as a function of the colatitude θ. We deduce then from eq. 32 :

GM

R(θ)
+

1

2
Ω2R(θ)2 sin2 θ =

GM

Rp

, (33)

where Rp is the polar radius. Isolating R(θ) in this equation is straightforward and
gives the form of the surface. In particular, we see that, at the critical velocity, the
ratio between the polar and equatorial radius is 2/3.

3.5 Transport of energy by radiation

We saw that the pressure increases quickly with the depth inside stars, reaching
values of the order of P ≈ GM2/R4. On the opposite, in many stars such as main
sequence stars (core hydrogen burning phase), the core density is not very high. As
an example, the average density of the Sun is slightly larger than water. Assuming
that the state of matter is reasonably well described by an ideal gas, we �nd for the
Sun :

Tc '
Pcµmu

kρc

≈ GMµmu

Rk
' 107K . (34)

Rigorous models give Tc ' 15 × 106K for the core temperature of the Sun. On the
opposite, the Stefan-Boltzmann law shows that the surface temperature of the Sun is
of the order of 5800 K. Such contrast of temperature necessarily leads to a signi�cant
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transport of energy from the core to the surface (2nd principle of thermodynamics). A
common error is to think that transport and production of energy are related inside
stars. This is completely wrong : the energy transport is due to the temperature
gradient only. Moreover, the high temperatures in the stellar cores are NOT due to
the production of energy by nuclear reactions !

In stellar interiors, the radiation spectrum is extremely close to a black body. In
particular, the density of radiation energy per unit volume is given by :

ERad = aT 4, (35)

where a = 4σ/c. Deep in the star, it is very high due to the very high temperatures.
Hence, radiation is a very good candidate for the transport of energy. However, we
will see in Chapter 5 that the interior of stars is very opaque. The photons strongly
interact with matter through di�erent kinds of electronic transitions (bound-bound,
bound-free, free-free and scattering). As a consequence, photons are continuously
absorbed and emitted in other directions. The mean free path of a photon is of the
order of a centimeter or lower in stellar interiors. This is completely negligible com-
pared to the scale heights of the di�erent quantities : |dr/dlnT |, |dr/dlnP |, . . .(the
scale height is the radial distance over which a given quantity varies by a factor
e). The photons received on earth are emitted from the surface of stars, the pho-
tosphere, and don't hold any direct information about their opaque interior. The
continuous absorptions and reemissions over very small spatial scales quickly lead
to the establishment of a statistical equilibrium for the occupation of the di�erent
states, which is called local thermodynamic equilibrium. For the photons, the
function describing these di�erent states is the Planck function. We gave its expres-
sion for the monochromatic �ux in eq. 7. Dividing it by π (resp. by c/4) gives its
analogs for the intensity, which we note Bν(T ), and the density of radiation energy
per unit volume.

The equation of radiative transfer in a plane parallel strati�ed medium reads :

µ

κλρ

dIλ
dr

= −µdIλ
dτ

= Bλ − Iλ , (36)

where Iλ is the monochromatic intensity, µ = cos θ (θ is the angle between the pro-
pagation direction and the radial direction), κλ is the opacity and τ is the optical
depth (dτ = −κλρdr) at wavelength λ. The source function in the local thermody-
namic equilibrium approximation is the Planck function Bλ. Integrating it gives the
following formal solution :

Iλ(τ) =
∫ ∞

τ
Bλ(T (τ ′)) eτ−τ ′ dτ ′ ' Bλ(T (τ)).

When the mean free path of a photon is negligible compared to the temperature
scale height, this integral solution can be strongly simpli�ed. Indeed, in this case a
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signi�cant variation of τ does not lead to a signi�cant variation of the temperature ;
Bλ(T (τ)) is thus a function of τ varying much slowerly than the exponential in this
integral. In very good approximation, it can thus be taken out of the integral and
we get Iλ ' Bλ. Multiplying now equation 36 by 2πµ and integrating over µ gives
for the left hand side :

2π
∫ 1

−1

µ2

κλρ

dIλ
dr

dµ ' 2π
1

κλρ

dBλ

dr

∫ 1

−1
µ2 dµ =

4π

3κλρ

dBλ

dr
. (37)

After integration, the �rst term of the right hand side is zero because Bλ does not
depend on µ. The second term becomes : −2π

∫ 1
−1 µIλdµ = −Fλ. We have thus :

Fλ = − 4π

3κλρ

dBλ

dT

dT

dr
.

We now integrate the �ux over all wavelengths, which gives :

F =
∫ ∞

0
Fλ dλ = −4acT 3

3κρ

dT

dr
. (38)

In this equation, we introduced the Rosseland mean opacity de�ned by :

κ =

[
π

acT 3

∫ ∞

0

1

κλ

dBλ

dT
dλ

]−1

.

Multiplying equation 38 by 4πr2 gives :

LR = 4πr2F

= −16πr2acT 3

3κρ

dT

dr
, (39)

which is the equation used to model the transport of energy by radiation in stel-
lar interiors. LR is the power of radiation crossing the sphere of radius r. In view
of the di�usive Brownian motion of photons throughout the star, this equation is
often called the (radiative) di�usion equation. Equation 39 is very similar to the
Fourier's law of thermal conduction, where the heat �ux is also proportional to the
temperature gradient. The factor 4acT 3/(3κρ) is thus the radiative thermal conduc-
tivity. We will see later that dL/dr = 0 in the envelope of stars where no energy is
produced by nuclear reactions. In the uppermost layers, the opacity is the largest
due to the numerous bound-bound and bound-free transitions. Since the luminosity
is constant, the temperature gradient strongly increases in these opaque layers, in
order to ensure the transport of energy. Similarly, a good isolation in a house allows
to maintain a large temperature gradient between inside and outside.

In future derivations, when we will study convection, we will use the quantity ∇,
called the real gradient, de�ned by :

∇ ≡ d lnT

d lnP
=
P

T

dT/dr

dP/dr
= − r2P

ρGmT
dT/dr. (40)
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Substituting it in eq. 38 gives

LR =
16πacGmT 4

3κP
∇ , (41)

or equivalently :

∇ =
3κPLR

16πacGmT 4
. (42)

3.5.1 Radiative �ux in rotating stars, the Von Zeipel theorem

As we have seen above, the spherical symmetry is broken by the centrifugal force in
rotating stars. The (radiative) di�usion equation reads in this case :

~F = −4acT 3

3κρ
∇T . (43)

For a cylindrical rotation, we have seen that the pressure, density and temperature
are constant on equipotential surfaces. We can thus write :

~F = −χ(Ψ)
dT

dΨ
∇Ψ = χ

dT

dΨ
~geff , (44)

where χ ≡ 4acT 3/(3κρ) is the radiative conductivity. Because of the centrifugal
deformation, |∇Ψ| = geff and thus the temperature gradient and the radiative �ux
increase from the equator to the pole along any equipotential. This is in particular
the case at the surface. By de�nition, the e�ective temperature is related to the
surface �ux by Teff = (F/σ)1/4. It increases thus also from the equator to the pole.
In the scienti�c literature, this e�ect is called gravity-darkening. For rigid rotation,
the expression for the �ux can be simpli�ed even more. In order to get it, we �rst
determine the power L crossing an equipotential. It is obtained by integrating the
�ux over the whole surface :

L =
∫
Σ

~F · ~n dσ = −χdT
dΨ

∫
Σ
∇Ψ · ~n dσ . (45)

From the Gauss theorem and eq. 29, this gives :

L = −χdT
dΨ

∫
V
∇2Ψ dV = −χdT

dΨ

∫
V
(4πGρ− 2Ω2) dV . (46)

Noting m =
∫
V ρ dV the mass of the volume V under the equipotential and < ρ >=

m/V the corresponding average density, we �nd :

L = −χdT
dΨ

4πGm

(
1− Ω2

2πG < ρ >

)
. (47)
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Finally, we substitute this result in eq. 44, which gives :

~F = − L

4πGm∗ ~geff (48)

with m∗ = m

(
1− Ω2

2πG < ρ >

)
. (49)

This equation is valid for any equipotential. But in general, the Von Zeipel theorem
is considered for the surface.

3.6 Transport of energy by convection

3.6.1 Convective instability

We have seen in the previous section that the high opacities in stellar envelopes lead
to high temperature gradients. We will see in this section that they can lead to a
new physical process : convection. The convective instability always occur in a �uid
in hydrostatic equilibrium when a high enough temperature gradient is produced.
This is for example the case if you heat a water pan : if the heat �ux is high enough,
convective motions occur in the water. We will see that these motions also ensure a
bottom-up transport of energy, which must be added to the radiative transport.

To understand the origin of the convective instability, we consider a blob of matter
displaced up. We assume that the speed of this element is much lower than the sound
speed. As a consequence, pressure equilibrium between the blob and the surrounding
can be assumed. I introduce the following notations :
� ρ, T, P : initial density, temperature and pressure of the element and its surron-
ding,

� ρe = ρ+∆ρe, Te = T + ∆Te, Pe = P + ∆Pe : �nal density, temperature and
pressure of the element after its displacement,

� ρm = ρ+∆ρm, Tm = T + ∆Tm, Tm = P + ∆Pm : �nal density, temperature and
pressure of the surrounding medium where the element arrived.

As mentioned above, we assume pressure equilibrium between the element and the
surrounding : Pe = Pm, ∆Pe = ∆Pm = ∆P . We now compare the densities of the
element and the surrounding medium.

Case 1 :

ρe > ρm ⇔ ∆ρe > ∆ρm ⇔ ∆ρe

ρ
>

∆ρm

ρ
(50)

In this case, the resultant of the contact forces due to the pressure gradient exerted
on the element by the surrounding medium is smaller than its weight. The Archimede
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(buoyancy) force is thus oriented downwards and pushes back the element towards
its initial position :

The strati�cation of the medium is stable with respect to convection.

Case 2 :

ρe < ρm ⇔ ∆ρe < ∆ρm ⇔ ∆ρe

ρ
<

∆ρm

ρ
(51)

In this case, the resultant of the contact forces due to the pressure gradient exerted
on the element by the surrounding medium is larger than its weight. The Archi-
mede (buoyancy) force is thus oriented upwards and pushes even more the element
upwards :

The strati�cation of the medium is unstable with respect to convection.

In this unstable case, large scale convective motions occur. The driver of these mo-
tions is the Archimede force. We come back now to the condition of convective insta-
bility. In order to simplify the derivations, we consider an ideal gas, where P ∝ ρT/µ,
where µ is the mean molecular weight.Because of the pressure equilibrium, We can
thus write :

ρe

ρm

=
Tm

Te

µe

µm

. (52)

In what follows, we assume that there is no chemical composition gradient in the
considered region. The molecular weights are thus equal, which gives :

ρe

ρm

=
Tm

Te

. (53)

From equations 51 and 53, we see that the medium is convectively unstable if and
only if :

Te > Tm ⇔ ∆Te

T
>

∆Tm

T
. (54)

This result is already important. It shows that in convectively unstable regions, the
ascending elements are hotter than the surrounding medium. Therefore, they provide
heat to it. On the contrary, the descending elements are heavier and colder than the
surrounding medium. Therefore, they receive heat from it. The general picture is
thus of convective elements pumping heat from below, raising and providing this heat
to upper layers. Convection contributes thus to the outwards transport of energy.
We will come back later to the quanti�cation of this heat transport and continue
now with the convective instability criterion. 54 We considered an ideal gas in the
previous derivations. However, the inequality 54 is also valid for a non-ideal gas.

We divide now the inequality 54 by ∆P/P and take the limit for in�nitesimal varia-
tions. Since ∆P < 0, the inequality is reversed and we get the instability condition :
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(
dlnT

dlnP

)
e

<

(
dlnT

dlnP

)
m

. (55)

During its travel upwards, the element is expanding and providing heat to the sur-
rounding medium. The temperature decrease of the element is thus larger than what
it would have been without heat exchange (adiabatic expansion). We consider here
reversible thermodynamic changes, in which adiabatic is equivalent to isentropic.
We have thus :

∂lnT

∂lnP

∣∣∣∣∣
S

<

(
dlnT

dlnP

)
e

<

(
dlnT

dlnP

)
m

. (56)

∂lnT
∂lnP

∣∣∣
S
is usually noted ∇ad in stellar physics and it is called the � adiabatic gra-

dient �. In an ideal fully ionized gas with negligible radiation pressure, we have
∇ad = 2/5. More generally, ∇ad is a state variable. As such, it only depends on

the local temperature, density and chemical composition.
(

dlnT
dlnP

)
m
, the gradient cor-

responding to the strati�cation of the average medium is usually noted ∇ and it
is called the � real gradient �. Finally, the gradient seen by the element

(
dlnT
dlnP

)
e
is

usually noted ∇e. In convectively unstable regions, we have thus :

∇ > ∇e > ∇ad. (57)

In convectively stable regions, all the previous inequalities are reversed : a mass ele-
ment displaced upwards becomes heavier and colder than the surrounding medium,
it receives heat and its temperatures decreases less than for adiabatic expansion.
The necessary and su�cient local condition of convective instability in a chemically
homogeneous region is thus simply :

∇ > ∇ad. (58)

This criterion is however not adequate for practical use. Building a stellar model re-
quires to solve di�erential equations, some of them (the energy transport equations)
are not the same in radiative and convective zones. We need a criterion of convective
instability expressed as a function of the dependent and independent variables of this
di�erential problem : T , P , ρ, L, r, κ, m, . . .This is not the case of the inequality 58.

As a preliminary, it should be noted that radiation transports energy in all parts of
a star, in purely radiative zones as well as in convective ones, because a temperature
gradient is always present. Eq. 42 is thus also valid in convective zones. Based on
this, we introduce a new quantity called the � radiative gradient � and noted ∇rad.
It is obtained by replacing the radiative luminosity in equation 42 by the total
luminosity L = LR + Lc (Lc is convective luminosity, the power of convection) :

∇rad ≡ 3κPL

16πacGmT 4
. (59)
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The radiative gradient is thus the (�ctitious) gradient required to ensure the whole
transport of energy L by radiation only.

It is larger than the real gradient since L ≥ LR.

3.6.2 The Schwarzschild criterion

From this de�nition, we obtain the Schwarzschild criterion of convective instability.
A given layer is convectively unstable if :

∇rad > ∇ad. (60)

Proof of the Schwarzschild criterion :

� Convection ⇒ ∇rad > ∇ad.
From the criterion 58, convection ⇒ ∇ > ∇ad. Moreover, we have seen that
convection ensures a transport of energy, so that L > LR. Comparing equations
42 and 59 shows thus that : ∇rad > ∇. Therefore ∇rad > ∇ad.

� No convection ⇒ ∇rad ≤ ∇ad.
From the criterion 58, no convection ⇒ ∇ ≤ ∇ad. Moreover, the whole energy
is then transported by radiation, L = LR, so that ∇rad = ∇. We have thus
∇rad ≤ ∇ad.

3.6.3 The Ledoux criterion

In the previous derivations (from eq. 53), we assumed that there is no chemical
composition gradient in the considered region. However, numerous processes modify
the chemical composition (nuclear reaction, microscopic di�usion, . . .), leading to
gradients in radiative zones. When we consider the motion of a mass element over
a short time-scale it keeps its chemical composition but reaches regions where it is
di�erent. Its molecular weight is thus di�erent from the surrounding medium. The
famous Liège astrophysicist Paul Ledoux, considered as the father of the theory of
stellar pulsations, proposed in the 40s the �Ledoux criterion� of convective instability
taking this into account. Instead of an ideal gas, we consider now a �uid with a
general equation of state ρ = ρ(T, P, µ). The di�erential of this equation reads :

dρ

ρ
= α

dP

P
− δ

dT

T
+ φ

dµ

µ
, (61)

where α ≡ ∂ ln ρ/∂ lnP |T,µ, δ ≡ − ∂ ln ρ/∂ lnT |P,µ and φ ≡ ∂ ln ρ/∂ lnµ|P,T . Note
that in an ideal gas, α = δ = φ = 1. Assuming pressure equilibrium and ∆µe = 0
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and using equation 61 for the element and the surrounding, a �rst order Taylor
development of both sides of eq. 51 gives :

∆Te

T
>

∆Tm

T
− φ

δ

∆µm

µ
. (62)

Dividing this equation by ∆P/P and taking the limit for in�nitesimal variations, we
get the criterion of convective instability :

∇e < ∇ − φ

δ
∇µ, (63)

and �nally the Ledoux criterion, a given layer is convectively unstable if :

∇rad −
φ

δ
∇µ > ∇ad. (64)

In these inequalities, we used the notation ∇µ =
(

dlnµ
dlnP

)
m
. This criterion is easily

understood. Consider a region of the star where the molecular weight decreases
towards the surface. This is the most frequent case because nuclear reactions syn-
thesize heavier nuclei in the core and heavier nuclei intially present in the envelope
sink slowly towards the center (gravitational settling). We consider an element dis-
placed upwards. It reaches thus layers where the molecular weight is lower. At �xed
temperature and pressure, it is thus denser than the surrounding medium. The Ar-
chimede force is oriented downwards and pushes it back to its original place. We see
thus that ∇µ > 0 has a stabilizing e�ect opposite to the occurrence of convection,
in agreement with eq. 64.

3.6.4 Semi-convection

Imagine now that you are in a region of the star stable with respect to the Ledoux
criterion but unstable with respect to the Schwarzschild criterion, what will occur ?
A mass element displaced upwards is denser (Ledoux) and hotter than the surroun-
ding. It is thus pushed back by the Archimed force downwards until it becomes less
dense that the surrounding. The result is an oscillation at a frequency called the
Brunt-Väisäl ä frequency. However, the thermodynamic cycle corresponding to this
oscillation is a motor thermodynamic cycle : heat is received by the element from the
surrounding medium at the hot contraction phase when it is at the bottom and heat
is released from the element to the surrounding at the cold expansion phase, when
it is it at the top. It is well known that such motor thermodynamic cycle produces
a positive work, like in a car engine. In practice, this work is converted into mecha-
nical energy, leading to a growth of the amplitude of the oscillation until non-linear
e�ects break it and partial mixing occurs. The resulting pro�le of temperature and
chemical composition is still a matter of debate between stellar physicists.
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3.6.5 Thermohaline (�ngering) convection

Imagine now that you are in a region convectively stable with respect to the previous
criteria, but such that :

∇µ < 0. (65)

Although this is rare, this can occur mainly by two channels. The �rst one is ac-
cretion, when the star accretes heavier nuclei from outside (for example planets or
comets falling on the star !). The second one is radiative levitation, when radiative
forces push upwards high cross section heavy nuclei. Consider a mass element dis-
placed downwards. We assume that this motion is so slow that there is no di�erence
of temperature and pressure between the element and the surrounding medium. As
the element reaches regions of lower molecular weight, it becomes denser than the
surrounding medium. Hence, the Archimed force pushes it even more downwards.
This corresponds to a new kind of instability called thermohaline (or �ngering or
double-di�usive) convection. This instability is well known in oceanography : when
water reaching the pole gets frozen, the remaining �uid gets more salty, with higher
density than the deep water, so that it sinks.

3.6.6 Physical conditions leading to convection

Looking at the Schwarzschild criterion allows us to see what leads to convection :
any physical situation leading to a large value of the radiative gradient (eq. 59).

Convective core

In the central part of a star, we will see that nuclear reactions typically occur. The
large amount of heat provided by these reaction is evacuated towards the surface,
so that L(r) is high there. Quite often, this energy production is concentrated into a
small fraction of the mass near its center. This is a consequence of the very high sen-
sitivity of nuclear reactions to temperature. The mass m of the sphere where nuclear
reactions occur is thus small, L is high, thus L/m is very high, thus ∇rad ∝ L/m
is high and larger than the adiabatic gradient. Therefore, the star has a convective
core in this situation.

Convective envelope

In super�cial layers of a star, the opacity becomes much larger. We will analyse in
detail the sources of opacity in Section 5. The larger super�cial opacities are mainly
due to the bound-bound and bound-free electronic transitions occurring there. The
size of this super�cial region of large opacity and relatively low temperature increases
as the e�ective temperature decreases. Since ∇rad ∝ κ/T 4, it becomes larger than
the adiabatic gradient and a convective envelope is present. As an example, our Sun
has a convective envelope with a size of about 1/3 of its radius. For even colder stars,
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the convective l'enveloppe convective est de l'ordre d'un tiers du rayon total. Very
cool stars, like M-dwarfs, are fully convective (from the center to the surface).

3.6.7 Physical characteristics of convective zones

The Reynolds number, a well-known dimensionless number, quanti�es the degree of
turbulence of hydrodynamic motions :

Re =
V L

ν
, (66)

where V, L and ν are typical velocity, size and kinematic viscosity of the medium.
Motions are laminar for low Re and become turbulent above Re of several thousands.
In stars, the convective velocities are very high in the outer part of the convective
envelope, the size L is huge compared to phenomena on earth, and the viscosity is
low, so that Reynolds numbers are huge, typically from 1010 à 1013 ! !

Convective motions are thus extremely turbulent in stars.

Because of this extreme turbulence, modeling of convection in stellar envelopes is
very di�cult. The best models of these times are 3D Large Eddies Simulations
requiring months of computation time (for the modelling of hours of real time)
must be performed. And they still give an approximate view of reality because
the Reynolds number of these simulations are drastically reduced (by increasing
arti�cially the viscosity) to avoid major numerical problems. Modelling convection
on stellar time-scales (billions of years for the sun) is thus totally impossible !

3.6.8 The Mixing-Length Theory

However, what we need to know from the transport of energy processes, allowing us
to build a stellar model is the mean temperature gradient as a function of depth.
Limiting oneself to this pragmatical goal, approximate analytical models of convec-
tion have been proposed. The simplest and by far most widely used is called the
Mixing-Length Theory (MLT). The strong simpli�cation behind this theory is to
reduce the spectrum of turbulence to motions over a characteristic scale called the
mixing-length. This mixing-length is usually parametrized as follows :

l = α Hp = −α
(
d lnP

dr

)−1

, (67)

where Hp is the pressure scale-height and α is called the mixing-length parameter.
By calibrating appropriately this parameter, we can obtain stellar models in agree-
ment with observations (good location in the HR diagram typically). It is assumed
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in this theory that convective motions undergo a constant acceleration due to the
Archimede force over a mixing-length and next transmit the di�erence of enthalpy
∆h = he − hm to the surrounding medium. This theory takes approximately into
account the radiative loss of energy of convective elements during their motion,
through a quantity Γ called the convective e�ciency :

Γ ≡ ∇−∇e

∇e −∇ad

=
τrad
τconv

, (68)

where τconv is the mean life time of a convective element and τrad is the characteristic
time of the radiative losses of a convective element. In the mixing-length theory, Γ
is obtained by solving the following cubic equation :

9

4
Γ3 + Γ2 + Γ = A (∇rad −∇ad) , (69)

where

A =
δ P

2 ρ

[
κ cp ρ

3 g l2

12 a c T 3 P

]2

(70)

and δ ≡ − ∂ ln ρ/∂ lnT |P,µ. Once Γ is obtained by solving Eq. (69), the other gra-
dients are easily determined from :

9

4
Γ3 = A (∇rad −∇) , (71)

Γ2 = A (∇−∇e) and (72)

Γ = A (∇e −∇ad) . (73)

The convective �ux is then given by :

FC = (1/4)α2 cp ρ T

√
δ P

2 ρ
(∇−∇e)

3/2 . (74)

The mean radial velocity of a convective element is :

Vconv =
α

2

√
δ P

2 ρ
(∇−∇e) , (75)

and the mean life time of a convective element is :

τconv =
l

Vconv

. (76)

I don't justify in these lecture notes the above equations. I just propose a simple
interpretation of the most important factors appearing in eq. 74. By de�nition, the
convective �ux is the average �ux of enthalpy due to convective motions. Assuming,
as we did before, that equilibrium of pressure is maintained during the convective
motions, we have :

Fc = ρ cp < Vconv,r(Te − Tm) >, (77)
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where the �< >� correspond to a statistical average over all convective motions
(upwards and downwards). The factor ρ cpTα(∇ − ∇e) in eq. 74 is associated to
the quantity of enthalpy (ρ cp(Te − Tm)) transmitted after a deplacement over a
distance l ; and the factor (P/ρ)1/2α(∇−∇e)

1/2 is associated to the mean velocity
of a convective element accelerated over a distance l by the Archimede force.

We clearly see in equations 77 and 74 the factor ρ cpT , which is the density of enthalpy
(of an ideal gas). As we go down into a star, ρ and T increase quickly. The enthalpy
density (the �heat capacity �) becomes huge. A very small relative di�erence of
temperature between the convective element and the medium ((Te−Tm)/T ) is thus
su�cient to lead to signi�cant heat exchange. In other words, for a given convective
�ux, a value of ∇ − ∇ad very slightly above 0 is su�cient to ensure the energy
transport. In the deep layers of a star, where the heat capacity is huge, convection is
an extremely e�cient energy transport process. As a consequence, the temperature
gradient is nearly adiabatic in deep enough convective layers :

dT/dr ' −∇ad
Gmρ

r2

T

P
and ds/dr ' 0 . (78)

On the contrary, ρ and T are much lower near the stellar surface. In order to ensure
the required transport of energy, ∇ − ∇ad must thus be signi�cantly larger than
0 there. We see thus that the modelling of the near surface parts of convective
envelopes, where convection is not very e�cient is the di�cult part. The mixing-
length theory only gives a very approximate view of these layers.

3.6.9 Entropy pro�le in convective and radiative zones

To determine the entropy pro�le, we start from the general equation of state
T = T (s, P, µ) and di�erentiate it. This gives (without proof) :

dT

T
=
ds

cp
+∇ad

dP

P
+
φ

δ

dµ

µ
. (79)

This directly gives :

ds

dr
= cp

d lnP

dr
(∇−∇ad −

φ

δ
∇µ) = −cp

ρg

P
(∇−∇ad −

φ

δ
∇µ). (80)

As we have just seen, ∇ ' ∇ad deep enough in convective zones and ∇µ = 0
since everything is mixed. The entropy pro�le is thus quasi-constant deep enough in
convective zones and ds/dr < 0 in the outermost layers of the convective envelope.
On the opposite, in radiative zones we see from the Ledoux criterion that ds/dr > 0.
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3.7 Conservation of energy

We have seen in the previous sections that the hydrostatic equilibrium of a star leads
to huge pressures and thus huge temperatures in the core. The resulting temperature
contrast between the core and the super�cial layers leads to a transport of energy by
radiation and, in some layers, by convection from the core to the surface, where this
energy is radiated. As we will see in details in another section, the very high core
temperatures (≈ 15×106 K for the Sun) can lead to thermonuclear fusion reactions.
These reactions are exothermal and thus provide heat to the stellar plasma. In many
cases, like during the phase of hydrogen core burning, the power produced in the
core by nuclear reactions is equal to the power radiated by the star from its surface.
This is a simple example of energy conservation, which we call global thermal
equilibrium. However, we will see that stars can be out of thermal equilibrium
during some phases of their evolution. It is important to understand that nuclear
reactions are not the cause of the radiation of stars. Consider for example the Sun
and imagine we turn suddenly o� the nuclear reactions in its core. Would something
happen instantaneously ? No !... Why ? Heat is no longer provided to the core, but
the total internal energy of the Sun,

∫
M u dm, constitutes a huge reservoire (u cvT ,

the internal energy per unit mass, is very large due to the large temperatures). By
turning o� the nuclear reactions, you put the Sun out of thermal equilibrium. But,
with its current luminosity, you would have to wait for a time τth ≈

∫
udm/L ≈ 107

years before seeing a change due to this imbalance. Nuclear reactions are, as we
will see, the key process for the understanding of nucleosynthesis and the long term
evolution of stars. But they only have a secondary impact on the instantaneous
stellar structure. It is now time to establish the equation of energy conservation in
stellar interiors. For this purpose, we must quantify the local heat gain and loss
throughout the star.

εn is de�ned as the rate of heat production by nuclear reaction per unit
time and mass at a given point of the star.

Consider a spherical shell located at a distance r of the stellar center and of in�ni-
tesimal width δr and mass δm. As before, we assume spherical symmetry so that εn
is constant in the shell. The power provided to this shell by nuclear reaction is thus
simply εnδm.

Because of the energy transport processes, energy enters continuously from the bot-
tom of the shell and goes out from its top. More quantitatively, the power entering
in the shell from below is L(m) (or L(r) depending on your choice of independent
variable), the power crossing the surface of the sphere of radius r. And the power
going out of the shell from the top is L(m + δm) (or L(r + δr) depending on your
choice of independent variable), the power crossing the surface of the sphere of radius
r + δr and mass m+ δm.

Local thermal equilibrium (which is not the same as local thermodynamic equi-
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librium !) is de�ned as a physical situation where the heat gain and loss are exactly
equilibrated everywhere in the star. For our shell, the provided heat, L(m) + εnδm
is then equal to the lost heat, L(m+ δm). We have thus :

δL = L(m+ δm)− L(m) = εnδm. (81)

Dividing by δm and taking the limit for δm→ 0 gives :

The equation of energy conservation in thermal equilibrium is :

dL

dm
= εn, (82)

or by using eq. 12 :
dL

dr
= 4πr2ρ εn. (83)

In thermal equilibrium, we see from this equation that L increases outwards in the
nuclear reaction layers and is constant where there is no reaction. Eq. 82 is easily
integrated. Since the luminosity is zero at the center (an in�nitesimal point cannot
produce a �nite amount of energy), L(0) = 0, we �nd :

L(m) =
∫ m

0
εndm . (84)

In particular, the luminosity of the star is equal to the total amount of energy
produced by nuclear reactions in the whole star, local thermal equilibrium involves
global thermal equilibrium.

We will see that, after a transient phase, thermal equilibrium is often established
during the phases of nuclear burning, so that using eq. 82 is justi�ed. However we
will see also that, between each phase of nuclear burning, the star goes through
a transient phase of thermal imbalance. Out of thermal equilibrium, the net heat
provided to the gas is not zero. Let dq/dt be the heat provided per unit time and
mass to the gas. The �rst law of thermodynamic gives, for reversible changes :

dq

dt
= T

ds

dt
=
du

dt
+ P

dv

dt
. (85)

And from the above energetic balance sheet, the heat provided per unit time to the
shell is :

dq

dt
δm = εn δm+ L(m)− L(m+ δm) . (86)

Dividing by δm and taking the limit �nally gives :

T
ds

dt
=
du

dt
+ P

dv

dt
= εn −

∂L

∂m
. (87)

A typical thermal imbalance situation is the phase of stellar evolution preceding
the onset of nuclear reactions. εn = 0 during this phase. As L must necessarily be
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positive at the surface, ∂L/∂m > 0. Hence, eq. 87 shows that du/dt+ Pdv/dt < 0.
We will see later that the work term Pdv/dt usually dominates in stars. It is thus
lower than zero and the star contracts due to this thermal imbalance.

It is usual to give to the conservation of energy equation a similar form whether or
not thermal equilibrium. For this purpose, we de�ne εgrav = −Tds/dt. Equation 87
reads then :

dL

dm
= εn + εgrav. (88)

3.8 Synthesis of the equations of stellar structure

We synthesize in this section the di�erential equations to solve in order to describe
the internal structure of a star. We consider the two possible choices of independent
variables : the distance to the center r and the mass of each sphere m.

Mass of each sphere :

Independent variable = radius :

dm

dr
= 4πr2ρ (89)

Independent variable = mass :

dr

dm
=

1

4πr2ρ
(90)

Hydrostatic equilibrium :

Independent variable = radius :

dP

dr
= −ρGm

r2
(91)

Independent variable = mass :

dP

dm
= − Gm

4πr4
(92)

Transport of energy :

a) Radiative zone :

Independent variable = radius :

dT

dr
= − 3κρL

16πr2acT 3
. (93)
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Independent variable = mass :

dT

dm
= − 3κL

64π2r4acT 3
. (94)

b) Convective zone :

The modeling of convection is di�cult and still uncertain. As mentioned above, the
Mixing-Length Theory is a simple approximate theory relating the convective �ux
to the local temperature gradient (see equations 69 to 74).

Independent variable = radius :

dT

dr
' −∇Gmρ

r2

T

P
. (95)

Independent variable = mass :

dT

dm
' −∇ Gm

4πr4

T

P
. (96)

Note that deep enough in the star, convection is very e�cient, so that the tempera-
ture gradient is nearly adiabatic : ∇ ' ∇ad.

Conservation of energy :

Independent variable = radius :

dL

dr
= 4πr2ρ (εn + εgrav) . (97)

Independent variable = mass :

dL

dm
= εn + εgrav, (98)

where εgrav = −Tds/dt.

We can now count the number of equations and unknowns. We have 4 di�erential
equations. 4 dependent variables appear explicitely on the left hand sides of these
equations : m (or r), P , T and L. However, in addition to these 4 variables, there
are 4 others on the right hand side : ρ, κ, εn and εgrav. We need thus additional
equations.

These are �rst the equations of state of stellar matter. They express all thermody-
namic quantities as a function of two independent ones (T and P in what follows)
and the chemical composition :

ρ = ρ(T, P,Xi) , u = u(T, P,Xi) , s = s(T, P,Xi) . . . (99)
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where Xi is the vector of abundances. In chapter 4, we will analyse in detail the
state of stellar matter.

Calculating stellar opacities is a very challenging task. The opacity κ is a state
variable. As such, it is also a function of the local temperature, pressure and chemical
composition :

κ = κ(T, P,Xi) . (100)

In chapter 5, we will analyse in detail opacities and more generally the interaction
between radiation and stellar matter.

In stellar interiors, nuclear reactions are a consequence of the thermodynamic state,
mainly the very high temperatures. The rate of energy production by nuclear reac-
tions is thus also a state variable. As such, it is also a function of the local tempe-
rature, pressure and chemical composition :

εn = εn(T, P,Xi) . (101)

Substituting these equations in the system of 4 di�erential equations, we have as
much equations as unknowns.

3.9 Boundary conditions

With 4 di�erential equations, we need 4 boundary conditions to close the problem.
The 2 conditions to impose in the center are trivial, the mass of the central point
and the power produced by it are zero :

m(0) = 0 ; L(0) = 0 . (102)

On the opposite, obtaining accurate surface boundary conditions is not easy. The
physical conditions in the atmosphere of a star are very di�erent from the inter-
ior. There, the mean free path of a photon is of the order of the thickness of the
atmosphere (contrary to the interior where it is negligible) and it depends on the
wavelength. Eq. 93 is thus completely wrong in the atmosphere. The usual approach
is thus to separate the problems of stellar interior and atmosphere modeling. In this
approach, the previously computed atmosphere models provide the surface boundary
conditions for the interior models. More precisely, a continuous match between the
interior and atmosphere model is imposed at a given layer, which can typically be
the photosphere. In stellar physics, the photosphere is de�ned as the layer where
the local temperature is equal to the e�ective temperature, which means, by de�ni-
tion of the e�ective temperature, the layer where the energy �ux F = σT 4 (below
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the photosphere F < σT 4, above it F > σT 4). At the photosphere, we have thus by
de�nition :

Tphot =
(
L/(4πR2σ)

)1/4
. (103)

This is the �rst of the 2 surface boundary conditions. To obtain the second one,
the computation of atmosphere models is required. The input parameters required
to compute an atmosphere model are the e�ective temperature (or equivalently the
�ux), the gravity and the chemical composition. For given values of these parameters,
we have one atmosphere model and thus one value of the pressure at the photosphere
of this model :

Pphot = f(Teff , g,Xi) (104)

where Xi is the chemical abundance vector.

From eq. 103 and g = GM/R2, for given M , R, L and Xi, the pressure at the
photosphere is thus :

Pphot = f((L/(4πR2σ))1/4, GM/R2, Xi). (105)

This is the second of the 2 surface boundary conditions.

The mathematical problem to solve in order to obtain a model describing the internal
structure of a star is now well de�ned. It is useful to notice that it is more appropriate
to choose the mass of each layer as independent variable. Indeed, one can often
assume that the mass of a star is conserved during its evolution, it is an input
of the problem to solve. On the contrary, the total radius is unknown and varies
signi�cantly as the star evolves, it is an output of the problem. We have thus to
solve the 4 di�erential equations 90, 92, 94 (or 96) and 98 with the 4 boundary
conditions 102, 103 and 105.

It is important to note that the chemical composition of the model from the center
to the surface must be speci�ed as input. Indeed, it signi�cantly a�ects equations
99, 100, 101 and 105.

4 State of stellar matter

4.1 Ideal gas and mean molecular weight

Deep enough in the star, stellar matter is (nearly) fully ionized. This liberates a
lot of space. The size of nuclei is much smaller than the distance between them.
It is thus tempting to describe the state of matter as an ideal gas. However, the
particle are charged and thus interact through coulombian forces, which contradicts
the no interaction hypothesis of an ideal gas. To determine the signi�cance of the

29



coulombian interaction, we compare the mean kinetic energy of particles to the
electrostatic potential of an electron of charge e at a distance d of another one :

Ecin '
3

2
kT ≈ keV > e2/d , (106)

Because of the very high temperatures inside stars, the kinetic energy of particles
is always signi�cantly larger than the electrostatic potential. As a consequence, the
coulombian forces are not able to signi�cantly deviate the trajectories of particles
over a distance d and the equation of state can be approximated by an ideal gas :

Pg = nkT =
kρT

µmu

. (107)

We see in this equation the total number of particles per unit volume n and the
mean molecular weigth µ (dimensionless de�nition). For a fully ionized gas, it can
be obtained as follows for a given chemical composition. The Dalton law says that
the total pressure is the sum of the partial pressures of each constituant. We have
thus :

Pg = Pe +
∑

i

Pi , (108)

where Pe is the electronic pressure and Pi is the partial pressure of the ions i.
Similarly, we have :

n = ne +
∑

i

ni , (109)

where ne is the number of free electrons and ni is the number of ions i per unit
volume. The neutrality of the gas imposes to have as much electrons as protons. We
note Zi the number of protons in the nucleus i. The number of free electrons, ne, is
thus equal to the sum of the number of protons associated to each nucleus :

ne =
∑

i

Zi ni . (110)

Combining these 2 equations, we �nd thus :

n =
∑

i

(Zi + 1)ni . (111)

The number of ions i per unit volume is equal to the density of this ion ρi divided
by its mass Aimu. By de�nition of the mass fraction, we have thus :

ni =
ρi

Aimu

=
ρXi

Aimu

. (112)

Combining equations 107, 111 and 112 we have thus :

Pg = nkT = kT
∑

i

(Zi + 1)ni =
kρT

mu

∑
i

(Zi + 1)Xi/Ai =
kρT

µmu

. (113)
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We have thus for the mean molecular weight :

µ =

(∑
i

Xi(1 + Zi)/Ai

)−1

. (114)

It is important to note the di�erence between this relation and the corresponding
one for a non-ionized gas. In such gas, Zi should be replaced by 0 in eq. 114.

Exercice :

Calculate the mean molecular weights of the following fully ionized gases :
a) Pure hydrogen, b) pure helium, c) hydrogen (X=0.7) + helium (Y=0.3), d) helium
(Y=0.4) + carbon12 (XC = 0.4) + oxygene16 (XO = 0.2).

4.2 Partial ionization

However, the gas is not fully ionized everywhere in the star. As the temperature and
pressure decrease from inside towards outside, the electrons recombine progressively
in super�cial layers called partial ionization zones. The partial ionizations of
di�erent elements correspond to regions with di�erent ranges of temperature. For
example the hydrogen partial ionization zone (H+ + e− ↔ H ) corresponds to
temperatures between 10000 and 20000 K (it is just below the photosphere for an
intermediate mass star). The �rst ionization zone of helium (He+ + e− ↔ He)
intersects it with temperatures between 15000 and 25000 K. The second partial
ionization zone of helium (He++ +e− ↔ He+) is slightly deeper, in the temperature
range 35000-65000 K. The ionization potential increases of course with the charge of
the nucleus ; the partial ionization zones of the heaviest elements (for example Iron)
are thus deeper in the star.

The interior of stars is in local thermodynamic equilibrium. A statistical equilibrium
is thus established between the continuous ionizations and recombinations of elec-
trons in a partial ionization zone. The powerful tools of statistical physics allow us to
determine the occupation of each ionization states corresponding to this equilibrium,
this is the Saha equation (Meghnad Saha, 1920). Consider as a simple example a
gas of pure hydrogen. I note n0 the number of neutral hydrogen atoms (proton with
bound electron), n+ the number of free protons and ne the number of free electrons
per unit volume. The Saha equation reads then :

n+ne

n0

=
g

h3
(2πmekT )3/2e−χ/kT , (115)

where g is a constant and χ is the ionization potential of hydrogen.
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We note xH the �degree of ionization� of hydrogen :

xH =
n+

n0 + n+

. (116)

For a gas of pure hydrogen, n+ = ne. The equation of state reads thus :

P = (n0 + 2n+)kT = (1 + xH)(n0 + n+)kT = (1 + xH)
kρT

mu

. (117)

The mean molecular weight and the degree of ionization are thus related by µ =
(1 + xH)−1. As matter ionizes, the number of free electrons and thus the number of
free particles increases and these free electrons become the main contributors to the
pressure (the number of free electrons is larger than the number of ions in a fully
ionized gas). Combining the previous equations, the degree of ionization is easily
written as a simple function of the temperature and pressure :

x2
H

1− x2
H

=
g

h3

(2πme)
3/2(kT )5/2

P
e−χ/kT (118)

For kT >> χ, the right hand side of this equation is usually much larger than 1 and
xH → 1 (fully ionized hydrogen). For kT << χ, the right hand side is negligible and
xH → 0 (atomic hydrogen).

Exercice : Plot the degree of ionization of hydrogen as a function of temperature for
a pressure proportional to T 5/2.

4.3 The pressure integral

We establish now a result which will be very useful in the next sections. We consider
a gas of particles with an isotropic distribution of velocities, we want to determine
the pressure of the gas for a given distribution of momentum of he particles. We
neglect the interactions between particles (ideal gas).
First note that :

The pressure exerted by an ideal gas on a surface is the �ux of perpendi-
cular momentum trough this surface due to the motions of the particles.

As a preliminary step before considering the isotropic case, we consider particles
moving at the same speed v, momentum p, all in the same direction having an angle
θ with respect to the perpendicular to the surface. We note n the number of particles
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per unit volume. The perpendicular components of the momentum and velocity are
then p cos θ and v cos θ, so that the pressure exerted on the surface is :

P = n p v cos2 θ . (119)

We can now consider the isotropic gas where particles propagate in all directions
with the same probability and do not have the same speeds and momenta. I note
n(p) the density of particles per unit volume and momentum. The pressure of this
gas is given by the following integral :

P =
1

3

∫ ∞

0
v p n(p) dp . (120)

Proof :

sin θdθ/2 is the fraction of particles propagating in a direction having an angle bet-
ween θ and θ+ dθ with respect to the perpendicular to the surface. n(p)dp sin θdθ/2
is thus the number of particles per unit volume propagating in this direction and
having a momentum between p and p + dp. Using eq. 119, the pressure exerted by
these particles is :

dP = n(p) p v cos2 θ(sin θ/2) dp dθ . (121)

Integrating this expression over all possible θ gives the total pressure :

P =
∫ ∞

0
n(p) p v dp

∫ π

0
cos2 θ sin θ dθ /2 =

1

3

∫ ∞

0
v p n(p) dp . (122)

4.4 Radiation pressure

The gas of ions and electrons is not the only contributor to pressure in stellar inter-
iors. Photons also have a momentum given by p = hν/c, where ν is the frequency. A
momentum �ux is thus associated to radiation, it is called the radiation pressure. An
absorbed or scattered photon transmits its momentum (or part of it) to the electron
with which it interacts and push thus matter in its propagation direction. As an
example, in the super�cial layers of very massive stars, the momentum transmitted
by photons to matter is very large, leading to expulsion of this matter through strong
winds.

The interior of stars is very opaque, so that radiation is quasi-isotropic. We can thus
apply the result obtained in Sect. 4.3 to an isotropic gas of photons in thermodynamic
equilibrium (black body). It is more appropriate to use the frequency as integration

33



variable. We de�ne n(ν) as the number of photons per unit volume and frequency.
The pressure integral (eq. 120) reads thus for the photons :

Prad =
1

3

∫ ∞

0
c (hν/c) n(ν) dν =

1

3

∫ ∞

0
E(ν)dν , (123)

where E(ν) is the density of radiation energy per unit volume and frequency, it is gi-
ven by the Planck law. Integrating it over all frequencies gives the Stefan-Boltzmann
law for the radiation energy density :∫ ∞

0
E(ν)dν = aT 4 (124)

and we have the �nal result :

Prad =
1

3
aT 4 . (125)

The equation of state of an ideal gas + radiation is thus given by :

P = Pg + Prad =
kρT

µmu

+
1

3
aT 4 . (126)

Since the dependence of the radiation pressure with respect to temperature is much
higher than that of matter, radiation pressure dominates compared to matter (elec-
trons and ions) at high temperatures and/or low density. This is so in very massive
stars.

4.5 Quantum degeneracy of the electron gas

In the previous sections, we have neglected an aspect that can have sometimes
signi�cant consequences. Electrons and nucleons are fermions. As a consequence,
they must obey to the

Pauli exclusion principle : 2 fermions may not be in the same quantum state.

At moderate or low density, this principle is not a�ecting signi�cantly the occu-
pation statistics of the gas particles. The fermions and in particular the electrons
have enough free space around them, the number of easily accessible states is much
higher than the number of occupied states. In this case, the equation of state can
be approximated by eq. 126.

34



On the opposite, at very high density, the number of �easily� accessible electron states
is lower than the number of electrons. In this case, the Pauli exclusion principle is
very constraining, the gas is said to be �degenerated�.

We consider a gas of free particles without interaction between them (ideal gas).
The phase space is appropriate to describe the state of a free particle, it is the 6
dimensions space providing the possible positions and momenta of a particle. We
focus here on the electron gas. Indeed, we will see that degeneracy can mainly occur
for the electrons. Electrons are spin 1/2 particles, whic means that 2 values of the
spin are possible. In the phase space, the Pauli principle reads :

A volume of the phase space dx dy dz dpx dpy dpz = h3 can be occupied
by maximum 2 electrons (the two possible spins).

Before showing the consequences of degeneracy, a reminder of the classical non-
degenerate case is useful. In a classical gas in thermodynamic equilibrium, the dis-
tribution of free electrons momenta is given by theMaxwell-Boltzmann equation :

n(p) = ne
4πp2

(2πmekT )3/2
exp

(
− p2

2mekT

)
. (127)

In this equation, ne is the number of free electrons per unit volume, n(p) is the
number of free electrons per unit volume and momentum (already encountered in
Sect. 4.3) and me is the mass of one electron.

The problem is that this equation is not necessarily in agreement with the Pauli
exclusion principle. When it is not, it is wrong and it must be replaced by the
accurate Fermi-Dirac distribution, which will be presented later. To determine
the limit imposed by the Pauli exclusion principle, we consider the in�nitesimal
volume of the 6 dimensions phase space corresponding to a spatial volume dV and
all momenta between p and p + dp. Its volume in the phase space is : 4πp2dp dV
(volume of the spherical shell of radii between p and p+ dp times dV ).

In the phase volume h3, we have seen that the maximum number of electrons is
2. In the phase volume 4πp2dp dV , the maximum number of electrons is thus :
8πp2/h3dpdV . By de�nition, n(p) dp dV is the number of electrons in this volume.
The Pauli exclusion principle imposes thus :

n(p) ≤ 8πp2/h3 . (128)

The Maxwell-Boltzmann distribution can sometimes violate this inequality, when ?
The criterion of degeneracy answers to this question.

Degeneracy criterion
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We �rst replace n(p) by the Maxwell-Boltzmann expression (equation 127) in the
inequality 128. As the exponential tends to 1 as the momentum tends to 0, this
inequality is equivalent to :

ne
4πp2

(2πmekT )3/2
< 8πp2/h3

⇔ ne

(2πmekT )3/2
<

2

h3
(129)

We wish to reexpress this criterion with the density ρ instead of ne. It is clear that
they are proportional. This leads me to introduce the mean molecular weight
per electron de�ned by :

µe ≡
ρ

mune

. (130)

Using this relation, the inequality 129 becomes :

ρT−3/2

µe

<
2mu(2πmek)

3/2

h3
. (131)

Finally, replacing the constants by their values in MKSA units, the degeneracy
criterion (violation of the Pauli exclusion principle by the Maxwell-Boltzman distri-
bution) is :

ρT−3/2

µe/2
> 1.6× 10−5 kg m−3K−3/2. (132)

In the right member of inequality 131, you can see the mass of the considered par-
ticles (here the electron mass me). The smaller this mass, the easierly is this inequa-
lity violated. From that, we see that degeneracy appears �rst for the gas of electrons.
Much larger ρT−3/2 would be needed to enter in the degeneracy regime of nuclei.
The unique extreme case where nuclei degeneracy is reached is in neutron stars. On
the contrary, electron degeneracy is frequent in usual stars and, as we will see, it has
a strong impact on stellar evolution when it is present.

Completely degenerated gas

In order to describe the state of degenerated gas, the Fermi-Dirac distribution must
be used. It asymptotically tends to the Maxwell-Boltzmann distribution when
ρT−3/2 → 0. It is interesting to study the other extreme case where ρT−3/2 → ∞.
More precisely, we consider the limit case where T → 0 and ρ is �xed. The gas is
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said to be completely degenerated in this case. The Fermi-Dirac distribution tends
asymptotically towards the following function when T → 0 :

n(p) =
8πp2

h3
if p ≤ pF

n(p) = 0 if p > pF

pF is called the Fermi momentum, it can be directly related to the density and
pressure, as will be shown in what follows. We see that, in complete degeneracy, all
cases of the phase space are occupied by electrons up to the Fermi momentum.

It is possible to analytically determine the equation of state in this extreme case. I
begin by computing the number of electrons per unit volume. It is simply obtained
by integrating n(p) over all possible momenta :

ne =
ρ

µemu

=
∫ ∞

0
n(p)dp =

∫ pF

0

8πp2

h3
dp =

8πp3
F

3h3
(133)

From the de�nition of the mean molecular weight per electron (eq. 130), we have
thus

ρ = µe mu
8πp3

F

3h3
(134)

We compute now the electron pressure, using the pressure integral (equation 120)
established in Sect. 4.3.

Non-relativistic completely degenerated gas :

We begin with the case of a non-relativistic gas, in which v � c for most of the
particles. We can then assume that v = p/me, where me is the electron rest mass.
The pressure integral gives thus :

Pe =
1

3

∫ ∞

0

p2 f(p)

me

dp =
1

3

∫ pF

0

8πp4

meh3
dp =

8π

15h3

pF
5

me

. (135)

The Fermi momentum is easily eliminated by combining equations 134 et 135. This
gives :

Pe =
8π

15h3me

(
3h3

8πmu

)5/3 (
ρ

µe

)5/3

= K1 ρ
5/3, (136)

37



the pressure is thus proportional to the power 5/3 of the density in a non-relativistic
completely degenerated gas and is independent of the temperature.

Highly relativistic completely degenerated gas :

We consider now the extreme density case where pF � mec. In this case, most of
the electrons have relativistic speeds. v = p/me is wrong and we can assume instead
that v ' c for most of the electrons. The pressure integral gives then :

Pe =
1

3

∫ ∞

0
p c n(p) dp =

1

3

∫ pF

0

8πc p3

h3
dp =

2πc

3h3
pF

4 . (137)

Again, the Fermi momentum is easily eliminated by combining now equations 134
et 137. This gives :

Pe =
2πc

3h3

(
3h3

8πmu

)4/3 (
ρ

µe

)4/3

= K2 ρ
4/3, (138)

the pressure is thus proportional to the power 4/3 of the density in a relativistic
completely degenerated gas and it is independent of the temperature.

Partially relativistic completely degenerated gas :

In the intermediate case, where pF ≈ mec, we must use the following relation provi-
ded by the theory of special relativity :

p =
mev√

1− v2/c2
⇔ v =

p/me√
1 + (p/(mec))2

. (139)

The pressure integral reads then :

Pe =
1

3

∫ pF

0

8πp4 dp

meh3
√

1 + (p/(mec))2
. (140)

Note �nally that, in all completely degenerated cases, the pressure exerted by the
ions appears to be negligible compared to the electron pressure. In the above equa-
tions, the electron pressure can thus be replaced by the total pressure.

Partially degenerated gas :

Between the extreme cases of non-degenerated and completely degenerated gases,
we have partially degenerated gases. In this case, the Fermi-Dirac distribution must
be used :
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n(p) =
8πp2

h3

1

1 + exp(E/kT − ψ)
, (141)

where ψ is the degeneracy parameter (> 0 for a degenerated gas). For signi�cant
degeneracy (ψ � 1), the Fermi Dirac distribution can be separated in three part :
at small momenta and energies, n(p) ' 8πp2/h3 like in a completely degenerated
gas ; at very high momenta and energies, the decreasing exponential dominates and,
between, we have a continuous transition. The size of this transition region is of the
order of kT if energy is the independent variable. For signi�cant electron degeneracy,
it is important to notice that most electrons have energies much larger than kT ,
which is completely di�erent from usual non-degenerated gases (remind that the
mean energy of a particle is (3/2)kT in a non-degenerated monoatomic gas). You
must thus disregard this relation when you deal with a degenerated gas. Decreasing
the temperature does not necessarily leads to a decrease of the electron energies. In
a degenerated gas, this just leads to a decrease of the size of the transition region.
Imagine that you maintain constant the density, changing the temperature will not
signi�cant modify the pressure integral. Hence,

∂ lnP/∂ lnT |ρ ' 0, ∂ ln ρ/∂ lnT |P ' 0, (142)

in a degenerated gas. This has strong consequences on stellar evolution. One example
is the onset of helium burning in the core of a low mass (< 2 M�) red giant. Due to
the signi�cant core contraction preceding this phase, the core density is huge. The
temperature has also signi�cantly increased, up to ≈ 108 K, but not as much as
the density, so that the electron gas has become degenerated. When helium burning
starts, the produced energy increases the kinetic energy of the nuclei and thus the
temperature. But this has no impact on the pressure (exerted by the degenerated
electrons) and the density (equations 142), which remain constant and are not able
to control the temperature, a thermal runaway starts, the Helium �ash.

Electron density and mean molecular weigth per electron

In the previous derivations, we introduced the electron number density ne and the
mean molecular weigth per electron µe, related by µe = ρ/(mune). It is useful to
determine their values for a completely ionized gas. From equations 110 and 112, we
have

ne =
ρ

mu

∑
i

(Zi/Ai)Xi (143)

The hydrogen mass fraction is usually noted X, the helium mass fraction Y and the
one of all other elements (the �metals�) Z = 1−X−Y . Supposing as a simpli�cation
that the numbers of protons and neutrons are equal in average in the heavy elements,
equation 110 simpli�es as :

ne =
ρ

mu

(X + Y/2 + (1−X − Y )/2) =
ρ

mu

1 +X

2
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We have thus for the mean molecular weight per electron µe :

µe =
ρ

ne mu

' 2

1 +X
. (144)

The factor 1+X appearing in this equation will always be present when we consider
physical quantities depending on the number of free electrons. An important example
is the opacity, which will be considered in the next chapter.

4.6 State of matter as a function of ρ and T

Radiation pressure

We have seen (equation 126) that the radiation pressure is PR = (1/3)aT 4 and
the gas pressure of an ideal non-degenerated gas : Pg = kρT/µmu. The radiation
pressure dominates when :

1

3
aT 4 >

kρT

µmu

Taking the logarithm, this gives :

log T >
1

3
log ρ + cst.

In other words, radiation pressure dominates above a straight line of steepness 1/3
in the upper-left part of of a log ρ - log T diagram.

Electron degeneracy

Where is now the region where the electron gas becomes degenerated ? Taking the
logarithm of inequality 132, we see that this occurs when :

log T <
2

3
log ρ + cst.

In other words, the electron gas is degenerated below a sraight line of steepness 2/3
in a log ρ - log T diagram. White dwarfs are typical stars where the electron gas is
degenerated.

Usual ideal gas

Signi�cantly above this line and below the line associated to radiation pressure, the
equation of state can be approximated by the ideal gas law. In particular, it is worth
to notice that the di�erent layers of the Sun, from its surface to its center lay in this
latter region.

Relativistic degeneracy
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We have seen that it is important to distinguish relativistic and non-relativistic
degeneracy. Indeed, this signi�cantly a�ects the equation of state (compare equations
136 and 138). The degenerated electron gas becomes relativistic when the Fermi
momentum pF is larger than mec. pF is related to the density through equation 134.
Hence, the electron gas becomes relativistic when :

ρ > µemu
8π

3

(
mec

h

)3

' 1.95× 106 (µe/2) g/cm3 . (145)

This region is on the right of a vertical line in the log ρ - log T diagram.

Finally, it is worth to mention that at very high density and very low temperatures
(compared to typical stellar values) the ions cristalize, changing of phase from ga-
seous to solid. This occurs in cold white dwarfs. Since they are mainly composed of
carbon and oxygen, some refer to them as stellar diamonds !

5 Interaction between matter and radiation : the

opacity

An accurate knowledge of the interaction between matter and radiation is essential
for modeling the transport of energy by radiation inside stars. Concretely, the opacity
κ explicitely appears in the radiative di�usion equation :

dT

dr
= − 3κρLR

16πr2acT 3
.

We have demonstrated (see Sect. 3.5 for detail) that the opacity appearing in this
equation is the Rosseland mean opacity de�ned by :

κ =

[
π

acT 3

∫ ∞

0

1

κν

dBν

dT
dν

]−1

, (146)

where Bν is the Planck function. This mean opacity came from the integration of the
monochromatic �ux over all frequencies, under the hypothesis of very small mean
free path of photons :

F =
∫ ∞

0
Fν dν = −4π

3ρ

dT

dr

∫ ∞

0

1

κν

dBν

dT
dν .

The interpretation of this equation is important. 2 factors appear in it. First, there
is the mean free path of a photon (κνρ)

−1, the larger it is at a given frequency, the
more e�cient is the transport of energy at this frequency. Second, I remind that the
radiation �eld is quasi-isotropic in stellar interiors. Due to the temperature gradient,
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the number of photons going up is very slightly larger than the number of photons
going down. This explains the factor dBν/dr = (dBν/dT )(dT/dr). The larger it is,
the larger the di�erence between the upwards and downwards radiative �ux. This
factor is the largest around the peak of the Planck function at λ ≈ 0.29/T cm
(ν ≈ kT ).

As a summary, what matters for the modeling of radiation transport in
stellar interiors is to know the transparency (photons mean free path) of
the medium in the part of the spectrum where the photons are the most
numerous.

We consider now in more detail the di�erent sources of opacity. For the typical
values of the temperatures in stellar interiors, kT ≈ 1− 1000 eV . Indeed, expressing
the relation E = kT in eV gives EeV = 8.62 × 10−5 T (K). The changes of state of
electrons are the only transitions with such energies. We must thus focus on them
for opacity computation. On the opposite, the nuclear energy levels are of the order
of MeV. This is far too high for a star like our Sun, the interaction between nuclei
and radiation is usually not signi�cant. The only exception is the ultimate phase of
evolution of very massive stars. Just before and during the collapse of the iron core
initiating a type II Supernova explosion, the temperatures in the core are of the de
1010 K. Many photons have then enough energy to break nuclei. We are not there
and we can restrict to electronic transitions here. The di�erent possible electronic
transitions can be subdivided in 4 families : the bound-bound, bound-free, free-free
transitions and electron scattering.

Cross-sections

It is usual to deal with cross-sections instead of opacities. Both are related through
the de�nition of the mean free path lν of a photon with frequency ν :

l−1
ν = κνρ =

∑
i

σν,ini, (147)

where i corresponds to a given electronic state, ni is the number of electrons per unit
volume in this state and σν,i is the cross section associated to electronic transitions
from this state with a photon of frequency ν.

5.1 Bound-bound transitions

In boun-bound transitions, an electron goes from a bound state to another bound
state of higher energy. The required energy ∆E = hν is provided by a photon of
frequency ν, which is absorbed. One could think that the cross-section associated
to such transition is a Dirac peak at a frequency ν0 = δE0/h. However, there are
di�erent sources of broadening producing instead a cross-section with �nite >0 li-
newidth.
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Natural broadening :

The natural broadening is associated to the time-energy uncertainty principle. As
all states have a �nite lifetime, their energy is uncertain. This energy uncertainty
is inversely proportional to the lifetime. More precisely, the �natural� cross-section
σ(ν) is the following Lorentzian pro�le centered on ν0 :

σ(ν) ∝ 1

1/(2πτ)2 + (ν − ν0)2
. (148)

This natural broadening is always very small compared to the other contributions.

Thermal broadening :

The particles of a gas have a distribution of energy typically given by the Maxwell-
Boltzmann probability density function in non-degenerated case. From the point of
view of the moving particle, the absorbed photon is blue-shifted or red-shifted by the
Doppler e�ect depending on the velocity of the atom relative to the observer. For
non-relativistic velocities, this shift is δν/ν0 = V/c where V is the relative velocity
and c the speed of light. Noting ν0 = δE/h the frequency from the point of view
of the absorbing particle and Vz the velocity projected on the observer direction,
the frequency from the point of view of the observer is ν = ν0 (1 + Vz/c). Out of
degeneracy, the density probability f(Vz) is a normal distribution :

f(Vz) =

√
kT

2π
exp(−mV 2

z /(2kT )) , (149)

wherem is the absorbing particle's mass. Thermal broadening produces thus a Gaus-

sian cross-section centered on ν0, with a standard deviation
√
kT/mν0/c. It is called

thermal broadening.

Pressure broadening and Stark e�ect :

When a free charged particle goes very close to an ion, it perturbs its potential and
thus the energy levels of its bound electrons. The average e�ect of all these collisions
is a broadening (and slight shifts) of the cross-sections called pressure broadening.
The corresponding pro�le is more or less Lorentzian, like natural broadening, but
with larger linewidth.

The �nal cross-section σ(ν) associated to a given transition is obtained through a
convolution product of these di�erent pro�les.

The high complexity of the problems now appears in the huge number of bound-
bound transitions and the coupling between bound states. Each possible ion (k),
degree of ionization (i), initial (j1) and �nal (j2) excited level of the electron must
be considered. Noting nk,i,j the number of elements per units volume in the state
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(k, i, j) and σk,i,j1,j2(ν) the cross-section of the bound-bound transition from (k, i, j1)
to (k, i, j2), the opacity κ(ν) resulting from all possible transitions is :

κ(ν) = ρ−1
∑

k,i,j1,j2

nk,i,j1 σk,i,j1,j2(ν) . (150)

For given abundances of each element and under the hypothesis of thermodynamic
equilibrium, the di�erent number densities ni can be obtained from simple relations.
First, the Saha equation gives the fractional population of ionization degrees :

nI+1 ne

nI

=
gI+1

gI h3
2(2πmekT )3/2 e−χI/kT , (151)

where nI and nI+1 are the number densities of a given element in the ionization
states I and I +1. I remind that the Roman numeral indexing ions is the number of
its lost electrons minus 1 (e.g HI is neutral hydrogen, H

+=HII is ionized hydrogen,
He++=HeIII is fully ionized helium, . . .). ne is the electron number density and χI is
the ionization potential (see next section about bound-free transitions).

Second, the Boltzmann distribution gives the fractional population of excited states
of bound electrons :

ni

nj

=
Gi

Gj

e−∆Eij/kT , (152)

where ni and nj are the number densities at excited states i and j and ∆Eij = Ei−Ej

is the di�erence of energy between the two levels. Finally, the cross-sections must be
determined for all possible transitions. You can imagine that computing all of them
this is a huge work, particularly if you want to take the coupling between states into
account !

However, at a given temperature, all transitions don't have an equal importance.
Only the transitions for which you have enough photons matter, in other
words those such that ∆E ≈ kT . An important example in stellar interiors is
associated to elements of the iron group : iron, nickel, cobalt and manganese. All
bound-bound (and bound-free) transitions from the third electronic level M to a
higher level have similar ∆E in these elements. The corresponding temperatures
are T ≈ ∆E/k ≈ 200 000 K. At these temperatures, a lot of photons are able to
produce these transitions. This produces a peak of opacity around this temperature.
This peak is very signi�cant in B stars ; it plays a key role in the excitation of
pulsation modes of β Cep and Slowly Pulsating B stars.

Finally, it is easy to understand that bound-bound transitions only play a role in
regions where there are bound electrons. At temperatures below 106 K, they are nu-
merous and the bound-bound transitions contribute up to 50% of the total opacity.
On the opposite, at T ≈ 107 K, most elements are fully ionized and the bound-bound
transitions contribute to less than 10 % of the total opacity.
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5.2 Bound-free transitions

In a bound-free transition, an absorbed photon provides enough energy to a bound
electron to liberate it from the attraction of the nucleus. More precisely, the energy
of the photon is larger than the ionization potential of the electron : E = hν ≥ χ.
The electron arrives thus in the continuum of free electrons, its kinetic energy is the
additional energy hν−χ. The required frequency is thus ν ≥ χ/h. Above this critical
frequency, quantum mechanics shows that the cross-section follows a decreasing law
σ(ν) ∝ ν−3 until a new bound-free transition from a lower level becomes possible.
At each frequency νi = χi/h, there is a discontinuous increase of the cross-section.
This produces a saw-tooth σ(ν) curve, each discontinuity being related to a given
bound-free transition. As for the bound-bound transitions, all elements, degrees of
ionization and electron levels must be considered to determine the contribution of
bound-free transitions to the opacity.

Here also however, all transitions don't have an equal importance. Only the tran-
sitions for which you have enough photons matter, in other words those such that
ν ≈ kT/h, this is the �rst condition. The second condition is to have enough electrons
in the initial state. What are the ionization potentials ful�lling these two conditions ?
The bound-free transitions such that χ << kT don't ful�ll the second condition ;
the number of electrons in the corresponding initial state is too low, as can be seen
from the Saha equation (151). On the other side, if χ >> kT , the number of photons
able to produce the transition (ν ≥ χ/h) is too low. Hence, only the transitions such
that χ ≈ kT play a signi�cant role at a given temperature.

An important question is of course how the contribution of bound-free transitions
to the Rosseland mean opacity varies with the temperature. What matters in this
mean is the spectral domain ν0 ≈ kT/h where most photons are. Forgetting the
discontinuities, κ(ν) follows grosso-modo a ν−3 curve. Focusing on the most nume-
rous photons, we have thus κbf ≈ κ(ν0) ∝ ν−3

0 ∝ T−3. This justi�cation of the T−3

dependence is very approximate. The dependence of the bound-free opacity with
respect to the temperature, density and chemical composition is often approximated
by the following law :

κbf ' 4.34× 1025Z(1 +X)ρ T−3.5 cm2/g . (153)

This law is too approximate and is never used for the computation of realistic stellar
models, but it can be used to interpret tendencies. First you can note the T−3.5

dependence (a little better approximation than T−3). Except near the surface, the
opacity decreases as the temperature increases. Therefore, the core of a star is always
less opaque than its envelope. You can also note the presence of the factor Z (mass
fraction of heavy elements). The heavy elements are indeed the only ones having
bound electrons at temperatures larger than 105 K. The opacity due to bound-free
transitions is thus proportional to their abundance.

45



As for the bound-bound transitions, the bound-free transitions signi�cantly contri-
bute to the opacity in the super�cial layers of a star (T < 106 K). In deeper layers,
most elements are already ionized and the number of bound electrons is reduced.
Without electrons in the good initial state, bound-free transitions no longer play a
signi�cant role there.

5.3 Free-free transitions

In a free-free transition, also called �inverse Bremsstrahlung�, a free electron absorbs
a photon and goes in another direction with a surplus of kinetic energy hν provi-
ded by the photon. The inverse reaction is the well known Bremsstrahlung (from
bremsen "to brake" and Strahlung "radiation" ; i.e., "braking radiation" or "dece-
leration radiation"), where a charged particle de�ected by another charged particle
loses kinetic energy, which is converted into a photon. This clearly shows that this
process (in one direction or the opposite) always requires the presence of a second
charged particle (here an ion). Without it, conservation of both momentum and
energy cannot be ensured. Unlike the previous processes, there is no constraint on
the frequency of the absorbed photon. Quantum mechanics shows that the cross-
section of this transition follows approximately this law : σ(ν) ∝ v−1ν−3 (v is the
initial speed of the electron, the larger it is, the more di�cult to de�ect it). From
this, it is easy to estimate the contribution of free-free transitions to the Rosseland
mean opacity and its dependence with respect to temperature and chemical com-
position. Out of degeneracy, the mean speed of electrons is proportional to

√
T .

The domain of the spectrum which matters corresponds to ν0 ≈ kT/h. We have
thus κff ≈ κ(ν0) ∝ T−3.5. The dependence of the free-free opacity with respect to
the temperature, density and chemical composition is often approximated by the
following law (it is called the Kramers law) :

κff ' 3.68× 1022(X + Y )(1 +X)ρ T−3.5 cm2/g . (154)

This analytical law is less approximate than equation 153, but more accurate free-
free opacities are used in modern stellar structure models. In addition to the T−3.5

dependence, you can note the presence of the factor (X+1) (X is the hydrogen mass
fraction). We come back to this in the next subsection. Note also that the Kramers
law does not apply at all in a degenerated electron gas. Indeed, degeneracy limits
the number of possible electron states and thus the number of possible free-free
transitions. Matter is thus more transparent in a degenerated electron gas.

Free-free transitions signi�cantly contribute to the opacity in the deep layers of a
star (T > 106 K). Indeed, most elements are ionized there, leading to numerous free
electrons.
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5.4 Electron scattering

At a microscopic scale, electron scattering can be seen as an elastic collision between
a free electron and a photon. The photon and electron trajectories are de�ected
during the collision, but they keep their energy. No ion is required for this transition.
The photon is not absorbed ; however, because its trajectory is de�ected, this process
also contributes to the opacity. The classical macroscopic view of this phenomenon is
the following. An electro-magnetic wave produces a periodic variation of the electro-
magnetic �eld in the plasma of free electrons. Therefore, the electrons oscillate at
the same frequency. This oscillation of charges produces an electro-magnetic wave
propagating in another direction (like in an antenna), and the wave is partly or
totally re�ected.

When the electron speeds are non-relativistic, this process is called
Thomson scattering.
When the electron speeds are relativistic, this process is called
Compton scattering.

In the non-relativistic limit, the cross-section associated to this process is a constant
independent from the temperature and density, it is given by :

σes = 0.655× 10−24 cm2 . (155)

The contribution to the opacity is thus (using equation 144) :

κes =
ne

ρ
σes =

0.4

µe

' 0.2 (1 +X) cm2/g . (156)

Again, we see the X + 1 dependence associated to the number of free electrons.
It comes from equation 144 for the electron density. The evolution of the core of
main sequence massive stars illustrates the importance of this factor. Due to hy-
drogen burning in the core, X decreases and electrons anihilate with the produced
positrons (see next chapter). Therefore, fewer electrons can have free-free transitions
and produce scattering in the core, so that core opacity decreases as the star evolves.
This leads to a decrease of the mass of the convective core as the star evolves.

47



5.5 Conduction

Although this is not a process of interaction between matter and radiation, it is use-
ful to �nally mention the transport of energy by free electrons. At very high densities
and relatively low temperatures, we have seen that the electron gas is degenerated.
All cases of low energy being occupied, numerous electrons have very high energies.
Through the motion of these electrons and their collisions, this kinetic energy can
be transmitted to other layers by a di�usive process. This is the conduction by free
electrons. In the non-degenerate case, the mean free path of electrons is negligible
compared to the mean free path of photons, so that transport by conduction is negli-
gible compared to transport by radiation. On the opposite, in the case of degeneracy
all quantums cells in phase space below pF are �lled up, and electrons, when ap-
proaching other electrons have di�culties to change of momentum. �Encounters� are
rare and the mean free path of electrons is much larger. Conduction by degenerated
electrons becomes thus an e�cient transport process. Like radiative transport, the
conductive energy �ux is proportional to −∇T . This e�ect is usually mimicked by an
additional contribution to the transparency (inverse of the opacity) of the medium.
Hence, conduction acts exactly like a decrease of the opacity.
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6 Nuclear reactions

Nuclear reactions play a key role in stellar evolution. First, during the longest phases
of stellar evolution, they are the main source of energy production in the core of star.
More quantitatively we have seen that the modeling of the internal structure of a star
is possible by solving a set of di�erential equations (see Sect. 3.8). In one of them,
the equation of energy conservation (equation 98), the rate of energy production
by nuclear reactions appears explicitely : εn. We must know how it depends on the
temperature, density and chemical composition to build a stellar model.

Second, we will see later that the main driver of stellar evolution is the modi�cation
of the their chemical composition. It mainly comes from nuclear burning in the core.
The knowledge of nuclear reactions is thus essential to understand the evolution of
stars as a function of time. We will see that di�erent phases of nuclear fusion reac-
tions follow on from each other during a stellar life : fusion of hydrogen into helium,
fusion of helium into carbon, carbon into oxygen, . . .Stars are the great factories
creating all chemical elements (beyond helium) in the universe. At the end of their
life, the most massive ones explode as supernova and enrich the interstellar medium
with these new elements. New generations of stars form from this enriched medium.
This enables to understand how our solar system reached its present chemical com-
position. Di�erent generations of stars followed on from each other, progressively
enriching the stellar medium. Our Sun formed from a molecular cloud already signi-
�cantly enriched in heavy elements (the mass fraction of heavy elements in the Sun
is Z ' 0.015), including the key elements for the emergence of life (carbon, oxygen,
. . .). The �eld of astrophysics studying the synthesis of new nuclei in the universe is
called nucleosynthesis.

In this chapter, we will examine in detail the microscopic world of nuclear reactions,
forgetting temporarily the global description of stars. I �rst remind the general form
of a nuclear reactions between 2 nuclei :

BAB
ZB

+ CAC
ZC

→ DAD
ZD

+ EAE
ZE

+ ...
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6.1 Conservation laws

I �rst remind that nuclear reactions obey to conservation laws.

Conservation of the total number of nucleons

The nucleons are here the protons and neutrons. We note AX the number of nucleons
of the nucleus X. For the above reaction, we have thus :

AB + AC = AD + AE + ...

Conservation of the total charge

The charged particles in nuclear reactions are the protons, electrons and the po-
sitrons. We note ZX the number of protons in the nucleus X, e−i the number of
electron captures, e−f and e+f the numbers of emitted electrons and positrons, we
have thus :

ZB + ZC − e−i = ZD + ZE + e+f − e−f + ...

Conservation of momentum

The total momentum is a constant of motion. In a classical view, we can say that the
sum of the initial momenta of the incident particles and nuclei is equal to the sum
of the �nal momenta of the produced particles and nuclei. This naturally leads to
choose the center of mass of the system as origin of the coordinate system. We will
do that in all this chapter. In a classical view, we can consider 2 nuclei approaching
from each other, with velocities ~v1 and ~v2 in this referential. We keep during the
approach phase :

m1 ~v1 = −m2 ~v2 =
m1m2

m1 +m2

(~v1 − ~v2) = mµ ~v ,

where mµ is the reduced mass and ~v = ~v1− ~v2 is the relative velocity. In the classical
non-relativistic cas, the Newton equation reads :

mµ
d~v

dt
= −∇V (r) (~r = ~r1 − ~r2),

where V is the (coulombian) interaction potential of the 2 nuclei.
In quantum physics, the relative position of the nuclei is described by a wave function
called the wave function of the relative particle. |ψ(~r)|2 gives the probability density
of having a relative position ~r1 − ~r2 = ~r. It is obtained in the non-relativistic limit
by solving the Schrödinger equation :

ih̄
∂ψ

∂t
= − h̄2

2mµ

∇2ψ + V ψ . (157)
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The center of mass of the system is described by another wave function, which is a
plane wave when the (conserved) total momentum with respect to the observer is
perfectly known (this is usually not the case because of the Heisenberg uncertainty
principle).

Conservation of angular momentum

The angular momentum is also a constant of motion. In simple terms, the sum of
the initial angular momenta (orbital + spins) of the nuclei and electrons is equal to
the sum of the �nal angular momenta. In many nuclear reactions, the initial angular
momentum is 0, which corresponds to a frontal collision. An important exception is
resonant reactions.

Conservation of the lepton number

This conservation law matters for beta decays and electrons captures. The emission
of an electron is always accompanied by the emission of an anti-neutrino. The emis-
sion of a positron is accompanied by the emission of a neutrino. The capture of an
electron leads to the emission of a neutrino.

6.2 Energy of reactions

As we already said, energetical aspects are an essential aspect of nuclear reactions. In
quasi all what follows, we will consider the general case of a nuclear fusion reaction :

BAB
ZB

+ CAC
ZC

→ DAD
ZD

The Einstein relation E = Mc2 establishes an essential correspondence between
mass and energy. In nuclear reactions, the sum of the initial masses of all particles
is not equal to the sum of the �nal ones. If the total initial mass is larger than the
�nal one, the reaction is exothermic and the released energy is the mass di�erence
times c2. If it is smaller, the reaction is endothermic. As we will see, fusion reactions
of light nuclei are exothermic. The energy of the above reaction is :

Q = (MB +MC −MD)c2 . (158)

It is useful to introduce now the mass excess (we should say �the energy excess�) of
a given nucleus of mass M with A nucleons :

∆M ≡ (M − Amu) c
2 = 931.478 (M/mu − A) MeV . (159)

It is the opposite of the binding energy of this nucleus : the work to be done to
separate each nucleon at an in�nite distance from each other. This naturally leads
to the de�nition of the binding energy per nucleon :

f ≡ −∆M /A . (160)
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One can easily get the energy of reaction from these quantities. From the nucleons
conservation, we �nd directly :

Q = ∆MB + ∆MC − ∆MD = AD

[
fD −

(
AB

AD

fB +
AC

AD

fC

)]
. (161)

The curve f(A) giving the binding energy per nucleon as a function of the nucleons
number A summarizes energetical aspects of nuclear reactions. It strongly increases
for light nuclei up to a global maximum at the level of Fe56, and next slowly decreases
beyond it. Local maxima can also be seen at He4, Be8, C12, O16 (multiples of α
particles). In eq. 161, one can see that (AB/AD)fB + (AC/AD)fC is a weighted
average of the binding energies of the initial nuclei.

Consider the fusion of 2 nuclei lighter than Iron. Since f(A) increases, we have :
(AB/AD)fB + (AC/AD)fC < fD. Equation 161 tells us that Q > 0, the reaction
is thus exothermic. The fusion reactions are exothermic for nuclei lighter
than Iron.

On the contrary, consider now the fusion of 2 nuclei heavier than Iron. Since f(A)
decreases, we have : (AB/AD)fB + (AC/AD)fC > fD. Equation 161 tells us that
Q < 0, the reaction is thus endothermic. The fusion reactions are endothermic
for nuclei heavier than Iron.

6.3 Cross sections and nuclear reaction rates

We introduce now the concept of nuclear reaction rate. Consider an experience where
target nuclei C (number per unit volume NC) are bombarded by incident nuclei B
(number per unit volume NB) arriving with a �xed speed v, producing some nuclear
fusion reactions. The reaction rate rv is the number of nuclear reactions occurring
per unit time and volume. It is expressed as :

rv = σ(v) v NB NC , (162)

where appears a fundamental quantity, the cross-section σ(v). This equation is
easily understood. The larger the relative speed v and the larger the number of
particle pairs per unit volume2 NBNC , the more numerous are the collisions per unit
time that could eventually produce nuclear reactions. Note that, if the 2 nuclei are
identical, NB NC must be replaced by N2

B/2 in equation 162. Concerning the cross-
section, you can visualize it as follows. Imagine a shield of surface σ(v) attached
to each target nucleus and perpendicular to the relative velocity. A reaction occurs
whenever an incident nucleus crosses a shield. The whole problem is of course the
determination of this cross-section and how it depends on v.

Before doing that, I remind that the relative speed between two nuclei is not �xed in
the stellar plasma. On the contrary, it follows a distribution because of the thermal
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agitation. In order to get the mean reaction rate in the plasma, one must multiply
rv by the probability density f(v) and integrate. More precisely, since NBNC do not
depend on v, we have to determine the average of σ(v)v, which we note < σ(v) v >.
We have thus for the reaction rate :

r = < σ(v) v > NB NC . (163)

We will see that only very high speeds have a signi�cant weight in this integral and
only very high temperatures can lead to high enough speeds. In this case where
thermo-nuclear reactions result from the thermal agitation, we talk about thermo-
nuclear reactions. It will becomes clear later that it is useful to take the energy
instead of the relative speed as independent variable. The total kinetic energy, sum of
the 2 nuclei's kinetic energies in the center of mass reference frame, often called the
kinetic energy of the relative particle is given in the non-relativistic limit (v << c)
by :

E = (1/2)mµ v
2 . (164)

For an ideal non-degenerated gas, the probability density of these kinetic energies is
the Maxwell-Boltzmann's distribution :

f(E) =
2√
π

E1/2

(kT )3/2
exp

(
− E

kT

)
. (165)

The σv average is then given by :

< σ(v) v > =
∫ ∞

0
σ(E)v(E)f(E)dE , (166)

with v(E) =
√

2E/mµ in the non-relativistic limit.

Having de�ned r, we can now deduce from it the rate of energy generation by nuclear
reactions ε. For a reaction with rate r providing an energy per reaction Q, we �nd :

ε = Q r / ρ = Q < σ(v) v > NB NC / ρ

=
Q

MB MC

ρXB XC < σv > , (167)

where XB and XC are the mass fractions of the nuclei, MB and MC their masses,
and we have used the relation NB = ρXB/MB. Summing over all reactions (indexed
by k) gives the total energy generation rate :

ε =
∑
k

εk . (168)

Let's consider now the heart of the problem : the determination of the cross-sections.
Di�erent factors contribute to it.
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6.3.1 Geometrical factor

The �rst condition for the occurrence of a nuclear reaction is the collision between
two nuclei. In a simpli�ed view where we see the nuclei as rigid spheres (like billiard
balls), the cross-section associated to the collision phenomenon is π d2 where d is the
sum of the two nuclear radii. We know also that in this classical view, the change of
direction after collision depends on the impact parameter b, related to the angular
momentum L and momentum p by L = b p. It is easy to see that the cross-section
corresponding to the phenomenon �colliding with an impact parameter between b and
b+ δb� is

σδb = π((b+ δb)2 − b2) = πδb(2b+ δb), (169)

which is the surface of the ring with radii between b and b+ δb.

The quantum view of the problem is more complicate. In quantum physics, the
square of the angular momentum of a particle obeys to the quanti�cation condition
L2 = `(`+ 1)h̄2, where the quantum number ` is a natural. And we can reformulate
the question as : what is the cross-section associated to the phenomenon �Colliding

with an angular momentum L =
√
`(`+ 1)h̄� ? The answer given by quantum physics

is :
σ` = (2`+ 1)λ2/4π , (170)

where λ is the wavelength of the relative particle.

Most nuclear reactions correspond to frontal collisions, that is collisions with zero
angular momentum (` = 0). The cross-section associated to the �frontal collision�
phenomenon is thus simply :

σ0 =
λ2

4π
=

h2

4πp2
=

h2

8πmµE
∝ E−1 , (171)

where we used the de Broglie's relation between the wavelength and momentum of
a free particle. What we have to take in is the geometrical factor : E−1.

6.3.2 Gamow factor

Colliding is of course not enough for the occurrence of a nuclear reaction ! The biggest
obstacle is the Coulomb barrier. Nuclei are indeed positively charged particles and
they must get very close (≈ 10−15 m) in order that the attraction coming from the
strong interaction (�nite scope) wins over the Coulomb repulsion (in�nite scope).

It is useful to start by considering this problem in the frame of classical Newtonian
physics. Consider two nuclei approaching each other with a zero angular momentum
and a kinetic energy (of the relative particle) at in�nity E. As in any problem where
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the forces derive from a potential : the sum of the kinetic and potential energies is
constant. Since, the strong interaction has a �nite scope we can neglect it and we
have :

1

2
mµ v(r)

2 +
ZB ZC e

2

r
= E = cst. (172)

The minimum rapprochement distance (such that v(rmin) = 0) is thus such that :

ZB ZC e
2

rmin

= E . (173)

Moreover, the scope of the strong interaction and thus the required rapprochement
distance for nuclear fusion is r0 ≈ 10−15 m. The required energy for crossing the
Coulomb barrier is thus, in this classical reasoning :

E ≥ ECb =
ZB ZC e

2

r0
' ZB ZC Mev (174)

We consider here thermo-nuclear reactions where the distribution of kinetic energy
follows the Maxwell-Boltzmann distribution (equation 165). In average, it is < E >
= (3/2) kT ' 1 kev. From equation 165, we deduce that the probability of having
E ≈ 1 Mev is of the order of exp(−1000) ! ! If the whole universe was a gas with
temperatures lower than 107 K, not even one particle would have a so high kinetic
energy. The crossing of the Coulomb barrier seems thus impossible. Since the ratio
between the kinetic energy and the height of the Coulomb barrier is of the order of
10−3, one sees immediately that the minimum rapprochement distance is in average
of the order of 1000 times the size of the nuclei.

Fortunately, the microscopic world doesn't follow the Newton laws. A key quantum
e�ect o�ers a solution to nuclear fusion : quantum tunnelling.

Quantum tunnelling makes the crossing of the Coulomb barrier possible
for some nuclei.

I start with some reminder of what is quantum tunnelling. We consider the simple 1-
dimension case of a free particle encountering a rectangular barrier. In the stationary
case, the wave function is obtained by solving the (stationary) Schrödinger equation :

h̄2

2m

d2ψ

dr2
+ (E − V )ψ = 0 . (175)

Even if the energy of the particle is lower than the height of the barrier, E < V ,
the wave function ψ is not zero below the barrier. For a free particle moving in the
direction of increasing r, we have below the barrier :

ψ(r) = exp(−kr) with k = (1/h̄)
√

2m(V − E) . (176)

The crossing probability is given by the ratio of |ψ|2 between the outbound and
inbound sides :

Pcross = exp(−2k∆r) , (177)
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where ∆r is the thickness of the barrier.

The problem of the fusion between two nuclei is more complicate than the tunnelling
through a rectangular barrier because the potential varies now with the distance.
Introducing the notation :

k(r) = (1/h̄)
√

2mµ(ZBZCe2/r − E) , (178)

the Schrödinger equation reads for r ≤ rmin :

d2ψ

dr2
= k(r)2 ψ . (179)

The problem is that there is no exact analytical solution of equation 179 in this
case. However, in the limit case where the wavelength of the particle is much shorter
than the size of the barrier, an approximate analytical solution exists, it is called
the JWKB approximation. For a particle moving in the sense of decreasing r, this
approximate solution is given by :

ψ(r) =
1√
k(r)

exp
(
−
∫ rmin

r
k(r) dr

)
. (180)

Note that if k is constant, we recover eq. 176.

We can see when this approximation is justi�ed by computing the second derivative
of equation 180. One gets :

d2ψ

dr2
=

d

dr

(
−
(
k1/2 +

dk/dr

2 k3/2

)
exp

(
−
∫ rmin

r
k(r) dr

))

=

(
k2 +

d2

dr2

(
1√
k

)√
k

)
1√
k(r)

exp
(
−
∫ rmin

r
k(r) dr

)
. (181)

Comparing it to the right hand side of eq. 179, one sees that this approximation is
to neglect d2

dr2

(
1√
k

)√
k compared to k2. This is justi�ed if k(r) varies slowly in the

interval δr = rmin − r0 and k(r) >> 1/δr.

The barrier crossing probalility is then approximately (without proof) :

PG ' exp
(
−2

∫ rmin

r0

k(r) dr
)

' exp
(
−2π2rmin/λ

)
= exp

(
−(ZBZCe

2π/h̄)
√

2mµ/E
)

= exp
(
−bE−1/2

)
. (182)

56



This is the Gamow factor where :

b = 31.29 ZBZCA
1/2
µ (keV )1/2 and Aµ =

ABAC

AB + AC

. (183)

This result is easily interpreted. The barrier crossing by quantum tunneling is less
probable if :

� ZBZC and thus the Coulomb repulsion is larger,
� the kinetic energy at in�nity E is smaller,
� the reduced mass is larger (factor m1/2

µ in equation 178).

6.3.3 Nuclear factor

Signi�cant simpli�cations were introduced in the computation of the Gamow factor
(the JWKB approximation). Moreover, the decrease of the Coulomb barrier due to
free electrons passing between the two nuclei was not taken into. Last but not least,
crossing the Coulomb barrier is not enough for nuclear fusion. Most of the time the
produced nucleus is very unstable, and if a transition towards a stable state does not
occur quickly, the two nuclei split again and the fusion does not occur. This leads
to introduce an additional factor called the nuclear factor S(E). This factor takes
the strong interaction and weak interaction (when a β decay occurs) into account.
The cross-section at energy E reads then :

σ(E) =
S(E)PG(E)

E
=

S(E)

E
exp(−bE−1/2) (184)

In general, this nuclear factor S(E) varies slowly with E, contrarily to the Gamow
factor. More precisely, this is so for the non-resonant nuclear reactions. On the oppo-
site, for resonant reactions (see Sect. 6.5), S(E) varies sharply around the resonant
energy and some simpli�cations assumed in Sect. 6.4 will no longer be valid.

In practice, theoretical computations of S(E) are often too inaccurate. Experiments
are needed to measure it. Target nuclei with given density NC are bombarded by
incident nuclei (density NB) with a �xed kinetic energy E and speed v. The number
of nuclear reactions occuring during a given interval of time is measured, which
gives rv. Isolating the cross-section in equation 162 gives its measurement. And
�nally, the nuclear factor is given by S(E) = E PG(E)−1 σ(E). The main problem
is that, contrarily to stars, we cannot perform such an experiment over billions of
years ! ! A signi�cant amount of reactions must occur during a short time interval.
This is only the case for very high cross-sections and thus at very high energies. The
measurement of S(E) is thus only possible at very high energies E, much higher
than the kinetic energies in the core of stars. Hence, the experimental measurements
must be extrapolated down to the stellar energies, which magni�es the errors.
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6.4 The Gamow's peak

In the core of stars we talk about thermo-nuclear reactions, where the distribution
of kinetic energies follows a distribution, usually the Maxwell-Boltzmann distribu-
tion (eq. 165). To obtain the < σv > in eq. 163, we have to average σ(E)v(E) by
multiplying it by the probability density f(E) (eq. 165) and integrating over all

energies (eq. 166). We have thus (v(E) =
√

2E/mµ) :

< σ v > =
∫ ∞

0
σ(E)v(E)f(E)dE

=
∫ ∞

0

S(E)

E
exp(−bE−1/2)

√
2E

mµ

2√
π

E1/2

(kT )3/2
exp

(
− E

kT

)
dE

=

(
8

mµπ

)1/2
1

(kT )3/2

∫ ∞

0
S(E) exp

(
− E

kT
− b√

E

)
dE . (185)

The function exp(−f(E)) = exp
(
− E

kT
− b√

E

)
appearing in this integral takes non

negligible values in a restricted range ofenergies only, this is the Gamow Peak.
We consider here the non-resonant case where S(E) varies slowly compared to
exp(−f(E)). We can thus take S(E) out of the integral, as a good approxima-
tion. We see then that the majority of fusing nuclei have a kinetic energy around
the Gamow's peak. This is easily understood. The Gamow's peak exp(−f(E)) is the
product of the functions exp(−E/kT ) and exp(−b/

√
E).

If E is too large, the factor exp(−E/kT ) is small. At the temperature T , the number
of nuclei having an energy E >> kT is negligible. These nuclei are thus too rare to
contribute signi�cantly to nuclear reactions. If E is too small, the factor exp(−b/

√
E)

is small. At this energy, the length of the tunnel below the Coulomb barrier is too
large and the probability of crossing it by quantum tunneling is negligible.

The Gamow's peak corresponds thus to a compromise, the energy must be accessible
at the considered temperature and large enough to allow quantum tunneling below
the Coulomb barrier.

In view of its importance, it is useful to characterize with more detail the Gamow's
peak exp(−f(E)). We determine �rst the location and height of the peak. The energy
E0 where exp(−f(E)) has its maximum is found from f ′(E0) = 0 :

E0 =

(
bkT

2

)2/3

. (186)

This gives then :

τ ≡ f(E0) = 3E0/(kT ) = 3 · 2−2/3 b2/3 (kT )−1/3 . (187)
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We approximate now the Gamow's peak by a Gaussian function and determine its
standard deviation. A second order Taylor expansion of f(E) around E0 gives :

exp(−f(E)) ' exp(−f(E0)− f ′′(E0)(E − E0)
2/2)

= exp(−f(E0)) exp

−(E − E0

∆E/2

)2
 , (188)

where the standard deviation of the Gaussian is :

∆E/2 =
√

2/f ′′(E0) = 2
√
E0kT/3 ∝ b1/3T 5/6 . (189)

What we are mainly interested on is < σv > and its dependence with respect to the
temperature. Noting that

∫+∞
−∞ b exp(−(x/a)2)dx = ab

√
π, one gets :

< σv > ∝ T−3/2 ∆E e−f(E0) ∝ T−3/2 T 5/6 e−τ

∝ τ 2e−τ ∝ T−2/3e−cst.T−1/3

. (190)

This is the typical temperature dependence of non-resonant reactions. It is useful
to quantify the main parameters associated to the Gamow's peak. We note T7 ≡
T (K)/107 and introduce the parameter :

W ≡ Z2
BZ

2
C

ABAC

AB + AC

, (191)

which is directly related to the height of the Coulomb barrier. One gets then :

τ = 19.721W 1/3 T
−1/3
7

E0 = 5.665 keV · W 1/3 T
2/3
7

∆E = 4.249 keV · W 1/6 T
5/6
7 (192)

Particularly important is the sensitivity of the nuclear reaction rate with respect to
the temperature. It is quanti�ed by the parameter ν de�ned as : dé�ni par :

ν ≡ ∂ ln < σv >

∂ lnT

∣∣∣∣∣
ρ

=
τ

3
− 2

3

' 6.574W 1/3 T
−1/3
7 . (193)
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The energy generation rate ε is proportional to < σv > (eq. 167). We have thus
also :

ν =
∂ ln ε

∂ lnT

∣∣∣∣∣
ρ

. (194)

A �rst order Taylor expansion of ln ε around T0 directly gives :

ln(ε/ε0) = ln ε− ln ε0 ' ν (lnT − lnT0) = ν ln(T/T0).

The ε - T relation is thus approximated by the following power law around T0 :

ε = ε0 (T/T0)
ν ∝ T ν . (195)

From equation 193, one sees that ν can be very high.

For hydrogen fusion (Z = 1), one gets :

ν ≈ 6 .

For the fusion of heavy nuclei :

ν ≈ 20− 30 !!

The energy generation rates by nuclear reactions are thus always extremely sensitive
to the temperature. This has numerous impacts on the evolution, the structure and
the thermal stability of stars. One major example is the temperature control by
nuclear reactions, which will be analysed in detail later. In a nutshell, in normal
non-degenerated cases, nuclear reactions act like a very precise thermostat. A very
small core temperature increase leads to a large increase of the energy generation
rate. As a consequence, the stellar core expands and the temperature drops, coming
back to its initial value.

6.5 Resonant reactions

Until now, we considered non-resonant reactions. We consider now the other case of
resonant reactions. To understand them, it is �rst necessary to present the general
problem of modeling the states of a nucleus in quantum physics. The wave function of
a nucleus is written ψ(~r1, ~r2, . . . , ~rA, t) and its squared modulus gives the probability
of having the A nucleons located at ~r1, ~r2, ..., ~rA in the center of mass frame. In
principle, this wave function should be obtained by solving the Schrödinger equation
of the system, which reads for stationary states :

− h̄2

2mu

(
A∑

n=1

3∑
i=1

∂2

∂x2
i,n

)
ψ + V (~r1, ~r2, ..., ~rA)ψ = E ψ , (196)
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where E is the energy of the nucleus, V (~r1, ~r2, ..., ~rA) is the potential energy and
~ri = (x1,i, x2,i, x3,i). This partial di�erential equation whose unknown is the wave
function de�ned in a domain of dimension 3A is impossible to solve, even with
present super-computers.

The shell model of a nucleus is motivated by this major di�culty. It consists in
assuming that each nucleon is plunged into the mean constant potential generated
by the others. Solving the Schrödinger equation associated with this mean potential
is of course much simpler. There is a countable set of solution to this problem
corresponding to the di�erent possible states of the nucleon inside the nucleus. This
is the same in atoms where the solution of the Schrödinger equation gives the possible
states of the bound electrons. The major di�erence is that the electron states are
weakly coupled in an atom while, on the opposite, the nucleon states are strongly
coupled in a nucleus. In other words, the shell model is a crude approximation of
a nucleus. A nucleus is built by �lling the di�erent possible states with protons
and neutrons. Like for electrons �lling di�erent orbitals in an atom or molecule,
the states of nucleons form di�erent groups with similar energies. This explains the
existence of particularly stable nuclei, when a nuclear orbital is �lled. The simplest
example corresponds to the �lling of the fundamental lowest energy state. This gives
a nucleus with 2 protons and 2 neutrons (2 for the two possible spins). Adding the
lowest energy ` = 1 orbitals gives (2`+1 = 3) times 2 (spins) additional states. This
gives the oxygen nucleus with 8 protons and 8 neutrons. Continuing to �ll orbitals
de�nes so-called magic numbers (2, 8, . . .) of protons and neutrons corresponding to
very stable nuclei. Their high stability makes their fusion more di�cult, leading to
a signi�cant increase of the required temperature compared to the previous phase
of nuclear fusion.

Why is this important for nuclear fusion reactions ? First, one sees that there is not
one single possible state for a nucleus but a countable family of excited states (the
lowest energy state is called the fundamental state). One can subdivide them into 2
families.

On one side, there are the energy levels below the value of the potential at in�nity.
These are the stationary states.

On the other side, there are the energy levels above the potential at in�nity. These
are the quasi-stationary states.

When a nucleus is in a quasi-stationary state, there is a non-zero probability that
one part of it separates from the other, crossing the potential barrier. In return, the
existence of quasi-stationary states leads to resonant reactions : when 2 nuclei collide
with a kinetic energy E close to the resonance energy Eres of a quasi-stationary state
and the good angular momentum, the fusion is much more probable. Such resonance
e�ect is classical in eigenvalue problems. In quantum physics, it appears each time
a bound state and a free state with same energy are possible for a particle. The
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cross-section in the vicinity of a resonance has the shape of a Lorentzian pro�le :

σ(E) ∝ 1

(E − Eres)2 + (Γ/2)2
. (197)

This is the equivalent of the natural broadening of spectral lines. It comes from
the �nite lifetime of the quasi-stationary state : τ = h̄/Γ. Over a broader inter-
val of energy, σ(E) is the combination of a smooth component slowly increasing
with E (because of the Gamow factor) and di�erent Lorentzian peaks around each
resonance, where the reactions are much more probable.

It is important to note that the computation of < σv > is very di�erent for resonant
reactions and the reasoning leading to the Gamow's peak no longer applies. The
S(E) factor can no longer be taken out of the integral in equation 185. On the

opposite, the derivative of S(E) is much larger than that of exp
(
− E

kT
− b√

E

)
around

the resonance and it is this last factor that can be taken out of the integral. From
eq. 185, we have approximately :

< σ v > '
√

8

mµπ

1

(kT )3/2
exp

(
−Eres

kT
− b√

Eres

)∫ ∞

0
S(E) dE

∝ T−3/2 exp
(
−Eres

kT

)
. (198)

One sees that the dependence of < σv > (and thus ε) with respect to the tem-
perature is totally di�erent from the non-resonant case (where we had the factor
exp(−cst./T 1/3), see equations 187 and 190). The factor ν = ∂ ln < σv > /∂ lnT |ρ
is much larger in resonant reactions. For example, the fusion reaction synthesizing
carbon is a resonant reaction (see Sect. 6.7, eq. 231), with a T dependence corres-
ponding to ν ≈ 40. This means ε ∝ T 40 in the vicinity of the temperature where
this reaction happens (T ≈ 108 K) ! Eq. 198 is easily interpreted. For resonant reac-
tions, what only matters is having nuclei with the kinetic energy corresponding to
the resonance. The reaction rate is thus proportional to the probability of having
this energy at a given temperature, this explains the factor exp(−Eres/kT ) (from
the Boltzmann distribution), which is extremely sensitive to the temperature.

A last speci�c aspect of resonant reactions is that they often occur with a non-zero
angular momentum corresponding to the one of the quasi-stationary state (` 6= 0).
For an energy very close to the resonance, the cross-section can even saturate to the
maximum value given by the experience of quantum di�usion with a given angular
momentum : σ` = (2`+ 1)λ2/4π (equation 170).

For ` 6= 0, it is also useful to remember that the Schrödinger equation reads :

h̄2

2mµ

d2ψ

dr2
+

(
E − ZB ZC e

2

r
− `(`+ 1)h̄2

2mµr2

)
ψ = 0 . (199)

The crossing of the Coulomb barrier is thus modi�ed by the �centrifugal term� :
`(`+ 1)h̄2/(2mµr

2).
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6.6 Hydrogen fusion (T ≈ 106 − 107 K)

We consider now in more detail the nuclear reactions playing a major role in stellar
evolution. As a star evolves, we will show that its core temperature increases (Virial
theorem, see Sects. 8.1 and 10.3.1). As a consequence, its core goes through succes-
sive phases of nuclear fusion when the required temperature is reached. The �rst
signi�cant phase is hydrogen fusion into helium when the core temperature reaches
values of 106 − 107 K. Di�erent reactions are involved (see below), leading to the
synthesis of helium 4 from 4 protons (and two annihilated electrons) :

4 1
1H + 2 e− → 4

2He . (200)

The energy produced by this reaction is :

Qglob = (4MH + 2me− −MHe4)c2

where the Mi correspond to the nuclear masses and me− is the electron rest mass.
Neglecting the electron binding energies (compared to mec

2), one gets :
4MH + 4me− ' 4MH and MHe4 + 2me− 'MHe4 , where theMi correspond to the
atomic masses. This gives :

Qglob = (4MH − MHe4)c2 = 26.73Mev . (201)

The main ingredient required for the modeling of the thermal structure of a star is
the rate of energy production by nuclear reactions εn. It is related to the nuclear
reaction rate through eq. 167. However, we cannot apply directly this formula to
200 :

εn 6=
1

4

Qglob

m2
u

ρX2 < σv >pp . (202)

1 The �rst reason is that di�erent reactions with di�erent reaction rates are hidden
behind 200. The relations 167 apply individually to each reaction. We have to sum
the εk of each reaction k to get the total rate : εn =

∑
k εk. This total εn appears to

be di�erent from the right hand side of eq. 202 when the individual reaction rates
are di�erent.

The second reason is that some intermediate reactions (mainly the β decays) lead to
the production of neutrinos. The εn in the equation of energy conservation (equation
87) corresponds to the heat provided to the gas by the nuclear reactions. However,
the neutrinos nearly do not interact with stellar matter. They go out of the star
taking with them their energy. If Qk is the total energy produced by the reaction k
and Qν,k the energy of the emitted neutrino, the heat provided to the gas is Qk−Qν,k.

1The division by 4 in Eq. 202 comes from the fact that the incident nuclei (protons) are identical
and two p-p reactions (Eq. 203) are required for the synthesis of one helium nucleus.

63



The power provided by unit mass to the gas by all nuclear reactions is thus :

εn =
∑
k

Qk −Qν,k

M1,k M2,k

ρX1,k X2,k < σv >k .

We examine now each reaction hidden behind 200. Depending on the temperature,
there are mainly 2 groups of intermediate reactions. The �rst one is the so-called
proton-proton chain and the second one is the carbon cycle.

6.6.1 The proton-proton chain

The reactions of the proton-proton chain (also called the p-p chain) are the domi-
nating ones in the core of our Sun.

p-p reaction

1
1H + 1

1H → 2
1H + e+ + ν . (203)

This reaction is the most di�cult (smallest cross-section) of the chain. Before Hans
Bethe (1939) discovered it was possible, astrophysicists could not explain the energy
production in the core of our Sun. Indeed, since the early times of nuclear phy-
sics, it was known that the nuclei 2

2He and 5
3Li were strongly unstable and could

not stay in their fundamental state. The reactions involving 1
1H and 4

2He, the two
main nuclei of the universe, such as 1

1H + 1
1H → 2

2He and 1
1H + 4

2He → 5
3Li are

thus impossible channels for the synthesis of helium. In the reaction 203, the weak
interaction reaction p → n + ν (ν is a neutrino) occurs just during the crossing of
the Coulomb barrier. This weak transition is of Gamow-Teller type where one of
the nuclei changes its spin. Indeed, the 2 protons must arrive with opposite spins
(Pauli exclusion principle) but the stable state of deuterium is with aligned spins.
Such weak transition has a very small probability here because the initial and �nal
wave functions are totally di�erent : the initial one corresponds to a free state and
the �nal one to a bound state. The cross-section of this reaction is thus the smallest
of the p-p chain. Its kinetics is :

dH

dt
= − < σv >pp H

2 (204)

where H is the number of protons per unit volume. Based on this equation, one
de�nes its reaction time as τH = (< σv >pp H)−1. In the core of our Sun, it is of the
order of 109 years.

Note that the emitted positron direcly annihilates with a free electron of the plasma :

e+ + e− → γ . (205)
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Although it is the most di�cult, the p-p reaction is the less productive from an
energetical point of view. Summing the energies provided by the reactions 203 and
205 gives :

Q = 2∆MH − ∆MD − Eneutrino

= 1.442− 0.262 = 1.180Mev

which is much smaller than the 26/2 Mev of the full chain.

Deuterium fusion

2
1H + 1

1H → 3
2He + γ . (206)

This reaction is much easier because it only requires the crossing of the Coulomb
barrier. Its typical reaction time (solar core) is very low : τD = (< σv >pd H)−1 ≈ 1s.
Consequently, the deuterium nuclei produced by the p-p reaction nearly instanta-
neously merge with a proton. An equilibrium between production and destruction
of deuterium is thus established and we have :

0 ' dD

dt
=< σv >pp

H2

2
− < σv >pd HD (207)

⇒
(
D

H

)
eq

=
< σv >pp

2 < σv >pd

=
τD
2τH

≈ 10−17 .

This isotopic ratio is much smaller than the one observed in Earth's oceans :
(D/H)Earth ' 1.56× 10−4. Therefore, it is clear that the deuterium of the universe
(and in particular on Earth) does not �nd its origin in the core of stars. Big Bang
nucleosynthesis is the main candidate. When the early universe became cool enough
(kT ≈ 100 keV ), stable deuterium nuclei were synthesised. Before that, the mean
kinetic energies of particles were greater than its binding energy, deuterium that was
formed was immediately destroyed, a situation known as the deuterium bottleneck.
This bottleneck explains the insigni�cant amount of carbon and heavier elements
synthesised during the Big Bang. As we will see these heavier elements are synthesi-
sed in the core of stars. At twenty minutes after the Big Bang, the universe became
too cool for any further nuclear fusion to occur and the Big Bang nucleosynthesis
stopped. Big Bang nucleosynthesis explains the order of magnitudes of deuterium
isotopic ratios in the present universe. In the solar system, comets have deuterium
ratios similar to the Earth's ocean one, emphasizing the theory that Earth's surface
water may be largely comet-derived.

From this point, there are 3 possible channels in the p-p chain.
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ppI chain

The ppI chain is the dominating channel at temperatures below 1.5× 107 K, as for
example in the solar core. After the previous reactions, the next and last one is the
fusion of 2 3

2He nuclei :

3
2He + 3

2He → 4
2He + 2 1

1H . (208)

Although the Coulomb repulsion is larger than before (2 protons in each 3
2He), this

reaction is easier than the p-p reaction (203) because it does not require the simul-
taneous β-decay. In the solar core, its reaction time is τ33 = (< σv >33

3
2He)

−1 ≈ 106

years. The time variation of the 3
2He abundance is given by the di�erence between

its production (206) and its destruction (208). As we can assume equilibrium for
deuterium, one can use eq. 207, which gives :

d(3
2He)

dt
= < σv >pd HD − < σv >33 (3

2He)
2

= < σv >pp
H2

2
− < σv >33 (3

2He)
2 .

At equilibrium (d(3
2He)/dt = 0), this gives :(

3
2He

H

)
eq

=

√
< σv >pp

2 < σv >33

. (209)

To see how the abundance of 3
2He varies from the core to the surface, I remind

the equation 193 giving the dependence of the cross-section with respect to the
temperature for a non-resonant reaction : ∂ ln < σv > /∂ lnT ' 6.574W 1/3 T

−1/3
7

where W = Z2
BZ

2
C ABAC/(AB + AC). With twice as many protons in 3

2He, W is
larger in reaction 208 than in 203. We have thus :

∂ ln(3
2He/H)eq

∂ lnT
=

1

2

(
∂ ln(< σv >pp)

∂ lnT
− ∂ ln(< σv >33)

∂ lnT

)
< 0 . (210)

One sees thus that the abundance of 3
2He must increase from the core to the surface.

But of course this is only valid as long as the equilibrium (eq. 209) is established.
This is not the case in the super�cial layers of a star. Going down in hotter layers, the
�rst reaction to occur is deuterium fusion (206). Hence, the 3

2He production increases
with depth along with its abundance and it is not destroyed yet. It is only deeper
that 3

2He fusion becomes possible, when there is enough available 3
2He (the reaction

rate of 208 is proportional to (3
2He)

2). The result is a peaked pro�le of (3
2He/H) with

a maximum around 0.6 m/M .

ppII and ppIII chains

At temperatures larger than 2 × 107 K, an other reaction becomes more frequent
than 208 :

3
2He + 4

2He → 7
4Be + γ . (211)

After this reaction, 2 channels are possible, constituting the ppII and ppIII chains.
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ppII chain :

7
4Be + e− → 7

3Li + ν (212)
7
3Li + 1

1H → 4
2He + 4

2He . (213)

ppIII chain :

7
4Be + 1

1H → 8
5B + γ (214)

8
5B → 8

4Be + e+ + ν (e+ + e− → γ) (215)
8
4Be → 4

2He + 4
2He . (216)

The ppII chain dominates at T ≈ 2 − 3 × 107 K and the ppIII chain dominates at
T > 3× 107 K.

Related to the solar neutrino problem (see later), it is useful to take a closer look to
the reactions producing neutrinos : 203, 212 and 215. The neutrino energies di�er
signi�cantly from one reaction to the other. In reactions 203 and 215, the energy is
shared between the kinetic energy of the positron and the neutrino energy. There
is a continuum of possible neutrino energies peaked around 0.263 MeV for the p-p
reaction and around 7.2 MeV for the boron decay. The electron capture (212) occurs
at speci�c energies corresponding to the two possible excited states of lithium. The
neutrino energy has thus two possible values : 0.861 and 0.383 MeV.

Let's examine �nally the dependence of ε with respect to the temperature of the p-p
chain. We have seen above (equation 193) that ν = ∂ ln ε/∂ lnT ' 6.574W 1/3 T

−1/3
7 ,

with W = Z2
BZ

2
C ABAC/(AB + Aa). All reactions of the p-p chain involve light

nuclei. At equilibrium, this gives νpp ≈ 5− 6 depending on the temperature. Out of
equilibrium, ν can be larger than that. In any case, this is much smaller than what
we will �nd for the other reactions.

6.6.2 Carbon cycle

Although initially, stars are mainly constituted of hydrogen and helium, other heavier
elements are also present. After H and He, the most abundant elements in the
universe are oxygen and carbon. They can act as catalysts in the nucleosynthesis
of helium from hydrogen, which constitutes the carbon or CNO cycle. Beyond T ≈
2× 107 K and if there is enough initial carbon and oxygen (population I stars), this
cycle becomes more e�cient than the p-p chain. The main cycle of reactions is :
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12
6 C + 1

1H → 13
7 N + γ (217)

13
7 N → 13

6 C + e+ + ν (e+ + e− → γ) (218)
13
6 C + 1

1H → 14
7 N + γ (219)

14
7 N + 1

1H → 15
8 O + γ (220)

15
8 O → 15

7 N + e+ + ν (e+ + e− → γ) (221)
15
7 N + 1

1H → 12
6 C + 4

2He (222)

This is indeed a cycle since the carbon is restituted at the end. If all reactions occur
at the same rate, the abundances of C, N, O isotopes remain constant, they are
catalysts for the synthesis of helium from hydrogen.

Beyond this main cycle, there is also the following sub-cycle. Instead of 222, the
following reaction rarely occurs (probability 4× 10−4 compared to 222) :

15
7 N + 1

1H → 16
8 0 . (223)

Then come the following reactions :

16
8 O + 1

1H → 17
9 F + γ (224)

17
9 F → 17

8 O + e+ + ν (e+ + e− → γ) (225)
17
8 O + 1

1H → 14
7 N + 4

2He (226)

From here, the main cycle is reached and the reactions 220, 221, . . . can follow.

Two distinct regimes can settle during the life of a star. The �rst one is the equili-
brium regime where the rates of reactions 217 to 222 are equal. In this case, the
abundance of C, N, O isotopes remain constant, they are catalysts for the synthesis
of helium from hydrogen. From an energetical point of view, 26 MeV are provided
to the gas per produced helium nucleus. The sub-cycle 223, 224, 225, 226, plays a
negligible role in this regime, because of the very low probability of 223.

The second possibility is the out of equilibrium regime typically occurring during
the beginning of the life of a star. An important aspect of the CNO cycle is that
the reaction 220 has a cross-section much smaller than the others. Initially, the
stellar matter is mainly composed of 12

6 C and 16
8 O (after H and He). When the

temperature reaches some 106 K, the reactions 217, 218 and 219 start to convert 12
6 C

into 14
7 N. Slightly later, the reactions 224, 225 and 226 also convert 16

8 O into 14
7 N.

Since the reaction 220 has a too small cross-section, it does not occur. The result
is the conversion 12

6 C and 16
8 O into 14

7 N. This out of equilibrium regime has a short
duration compared to the equilibrium regime. Indeed, the quantity of available 12

6 C
and 16

8 O is much smaller than hydrogen. When carbon and oxygen are exhausted, the
production of energy drops. As a consequence, the core contracts and its temperature
increases, which increases a lot the < σv > of 220. As a consequence, and because
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the abundance of 14
7 N has become much larger than before, the reaction rate of 220,

given by r14 =< σv >14 (14
7 N) (1

1H), becomes signi�cant. 12
6 C is produced again, the

full cycle can occur and the star enters in the equilibrium regime.

It should be noted however that, in real cases, perfect equilibrium is not possible
because of the presence of a convective core. During most of the main sequence
phase (hydrogen burning phase), the averages of the rates of reactions 217 to 222
over the whole convective core are equal. But locally, they cannot be equal. The
nuclear reactions mainly occur near the centre but not in the super�cial layers of
the convective core. Convective motions homogenize the chemical composition in the
whole convective core. By continuously transporting fresh fuel in the core where it is
consumed, they arti�cially maintain a local desequilibrium. Indeed, the dependences
of the reaction rates with respect to the temperature vary from one reaction to the
other. So local equilibrium is incompatible with homogeneity.

The origin of this convective core lies in the great sensitivity to the temperature of
the rate of energy production through the CNO cycle. I remind that ν = ∂ ln ε/∂ lnT
increases with the height of the Coulomb barrier (eq. 193). With 6, 7 and 8 protons
for C, N and O, we �nd thus particularly high values for the CNO cycle : νCNO ≈
14− 16 depending on the temperature. There are two very important consequences
to this very great sensitivity of ε to T .

First, as ν is very high and the temperature decreases from the center to the surface, ε
is signi�cant only in a very small region near the center, with massMnuc << Mtot. We
can write by integrating the equation of energy conservation at thermal equilibrium
(82) :

L(m) =
∫ m

0
ε dm . (227)

From the center until Mnuc, dL/dm = ε is large. Beyond this mass, the derivative
is nearly 0 and L is constant. In the central layers, L(m)/m is thus very large. The
radiative gradient (equation 59), which is proportional to L/m is thus very high and
larger than the adiabatic gradient. These central regions are therefore convectively
unstable according to the Schwarzschild criterion (60).

The second consequence of this very high sensitivity of ε to T is the mechanism
of temperature control by nuclear reactions. This mechanism plays a major role in
stellar evolution, as we will see later.
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6.7 Helium fusion (T ≈ 108 K)

At temperatures of the order of 108 K, the nucleosynthesis of carbon from 3 helium
nuclei becomes possible, this is the 3 α reaction :

3 4
2He → 12

6 C . (228)

The probability that 3 α particle collide simultaneously is zero. In practice, this
fusion occurs in two steps.

First, 2 helium nuclei merge to form a 8
4Be nucleus in an excited state (84Be

∗). The
excited 8

4Be nucleus is very unstable and almost all the time splits again in two
α particles (the lifetime of 8

4Be
∗ is ≈ 10−16 s !). A thermodynamic equilibrium is

established with as much fusions and �ssions :

4
2He + 4

2He ↔ 8
4Be∗ . (229)

In this situation of thermodynamic equilibrium, one gets :

(8
4Be

∗)

(4
2He)

2
∝ T−3/2 exp(−E2α/kT ) ≈ 1.87× 10−33 f2α T

−3/2
8 × 10−4.64/T8 , (230)

where T8 = T (K)/108, E2α = 92 keV is the di�erence of energy E( 8
4Be

∗)−2E( 4
2He),

f2α is the electron screening factor2 and abundances are in number/cm3. At T8 = 1
and a typical density ρ = 105 g/cm3, one gets one 8

4Be
∗ nucleus for 109 4

2He nuclei
(one part per billion).

Although the abundance of 8
4Be

∗ is very small, it is large enough to make the next
step possible : the fusion of 8

4Be
∗ with an helium nucleus to form a carbon nucleus :

8
4Be∗ + 4

2He → 12
6 C . (231)

The fusion reactions 229 and 231 are resonant reactions3. Although 229 is endother-
mic, 231 produces more energy and thus 228 is exothermic. The reaction rate 228 is
equal to the one of 231 and follows the law of a resonant reaction (eq. 198) :

r3α ∝ (8
4Be

∗)(4
2He) T

−3/2 exp(−EαBe/kT ) . (232)

The heat provided by the fusion of 3 helium nuclei into a carbon nucleus is :

Q3α = (3Mα −MC)c2 = 7.275 MeV . (233)

2Electrons go between the nuclei and decrease the Coulomb repulsion.
3The discovery of the resonance state of 12

6 C required for reaction 231 was not trivial (Hoyle
1954, Cook et al. 1957). It was taken as an argument to support the anthropic principle according
to which the constants of physics must have very speci�c values to make the existence of humans
possible. . .
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This is much less than the 26 MeV of hydrogen fusion. Because of that and the larger
luminosity during this phase of helium fusion, its duration is much shorter than the
hydrogen fusion phase. The rate of energy production is obtained by combining 230,
232 and 233. This gives in cgs units (Y is the usual notation for the helium mass
fraction) :

ε3α = 5.09× 1011 f3α ρ
2 Y 3 T−3

8 exp(−44.027/T8) . (234)

One sees in this equation an extreme sensitivity to the temperature. At T8 = 1, one
gets ν = ∂ ln ε/∂ lnT ≈ 40 ! ! The core fusion of helium leads thus to the presence of
a convective core, like the CNO cycle.

α captures

The reactions 229 and 231 are not the only ones during this phase. As the abundance
of helium decreases and that of carbon increases, the following reaction starts to be
possible and progressively takes precedence over 228 :

12
6 C + 4

2He → 16
8 O . (235)

Finally, when enough oxygen is synthesized, it can also capture an α particle :

16
8 O + 4

2He → 20
10Ne . (236)

Carbon and oxygen are synthesized in comparable proportions from he-
lium during this phase, plus a very small amount of neon synthesis.

6.8 Carbon fusion (T ≈ 6− 8× 108 K)

At temperatures of more than half a billion degrees, the kinetic energies of carbon
nuclei are su�cient to make possible their fusion :

12
6 C + 12

6 C → 24
12Mg∗ .

At these high temperatures, the Gamow's peak is larger (law in T 5/6 in equation
192). As a result, there are a large number of quasi-stationary magnesium levels in
the corresponding energy range. Although the reaction of carbon fusion into magne-
sium is resonant, the nuclear factor S(E) varies thus slowly in the interval of the
Gamow's peak. Therefore, the temperature dependence of this reaction is similar
to that of a non-resonant reaction with a exp(−cT−1/3) law (eq. 190). The formed
magnesium nucleus is in an unstable excited state that rapidly disintegrates through
one of the following channels :
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12
6 C + 12

6 C → 24
12Mg∗ → 24

12Mg + γ (+13.931MeV) (237)

→ 23
12Mg + n (−2.605MeV) (238)

→ 23
11Na + p (+2.238MeV) (239)

→ 20
10Ne + α (+4.616MeV) (240)

→ 16
8 O + 2α (−0.114MeV) (241)

Of these di�erent channels, the most likely are the reactions 239 and 240.

At such high temperatures, the produced protons, neutrons and α particles are
immediately recaptured by other nuclei (see the reaction grid in the powerpoint
slides). Among others, there are the α captures :

12
6 C + 4

2He → 16
8 O (242)

16
8 O + 4

2He → 20
10Ne (243)

20
10Ne + 4

2He → 24
12Mg (244)

24
12Mg + 4

2He → 28
14Si (245)

Let's also quote the following interesting series of reactions :

12
6 C + 1

1H → 13
7 N + γ (246)

13
7 N → 13

6 C + e+ + ν (e+ + e− → γ) (247)
13
6 C + 4

2He → 16
8 O + n (248)

We already met the �rst two of these reactions in the CNO cycle. The third is only
possible at these high temperatures and leads, together with 238, to the production of
free neutrons. This is important because neutrons without charge have no Coulomb
barrier to cross. They are therefore easily captured to form heavier nuclei. We will
come back to this later in the course (see s process).

In terms of energy, the balance of all these reactions is complex ; on average, ap-
proximately 13 MeV are released per pair of merging carbon nuclei. The tempera-
ture dependence of the energy production rate follows approximately a law εCC ∝
exp(−84.165/T

1/3
9 ), as in non-resonant reactions (see above) (T9 = T (K)/109).

In terms of nucleosynthesis, the result is complex, the main �nal products
of all these reactions are, in decreasing order of abundance : 16

8 O,
20
10Ne,

24
12Mg and 28

14Si.
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6.9 Neon photo-disintegration (T ≈ 1.2− 1.5× 109 K)

At T = 1.2 × 109 K, kT = 0.1 MeV. At such a temperature, a not completely
negligible number of photons corresponding to the tail of the Planck distribution has
the energy required to enable the neon photo-disintegration reaction : 20

10Ne + γ →
16
8 O + 4

2He. On the other hand, the temperature and therefore the energy of the
photons is not yet su�cient to allow the photo-disintegration of the other more
stable previously synthesized nuclei (O, Mg, . . .).

The energy required for this endothermic reaction is Q = 4.73 MeV. This �ssion is
done in 2 stages. A photon of energy hν = 5.63 MeV is �rst captured to bring the
neon nucleus to an excited level. Then this unstable nucleus splits spontaneously
into nuclei of oxygen and helium, with release of the energy di�erence (5.63-4.73
MeV) in the form of kinetic energy. Of course, the fusion of helium and oxygen into
neon is also possible at these temperatures :

20
10Ne + γ ↔ 16

8 O + 4
2He. (249)

The thermodynamic equilibrium between the direct and inverse reactions leads to
an abundance ratio obeying a Saha-like equation (see eq. 151) :

(4
2He) (16

8 O)

(20
10Ne)

∝ T 3/2 exp(−Q/kT ), (250)

with Q = 4.73 MeV, Q/(kT ) = 54.89/T9, T9 = T (K)/109. If there was only that,
once this equilibrium reached with as many direct and inverse reactions, the energy
production would be zero. This is not so because, from time to time, one of the helium
nuclei produced by the neon photo-disintegration can be captured by a nucleus
heavier than oxygen :

20
10Ne + 4

2He → 24
12Mg , (251)

24
12Mg + 4

2He → 28
14Si . (252)

After the equilibrium reactions 249, reaction 251 has the highest rate. Combining
the neon photo-disintegration and 251, we get :

2 20
10Ne → 24

12Mg + 16
8 O. (253)

Although the photo-disintegration reaction is endothermic, the energy released by 251
is larger than the 4.73 MeV. The energy balance of 253 and more generally
this phase is exothermic. The heat released per gram of consumed neon is ap-
proximately one quarter of that of the carbon fusion phase. 253 dictates the evolution
of the chemical composition during this phase, which gives :

d(O)

dt
=
d(Mg)

dt
= −1

2

d(Ne)

dt
= < σv >αNe (Ne) (He) . (254)
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Substituting in this equation the abundance of helium given by the equilibrium
relation 250, we get the energy production rate εNe :

εNe ≈ 8.54× 1026 T 12
9

Y 2
Ne

YO

exp(−54.89/T9) , (255)

where YNe and YO are the mass fractions of neon and oxygen. In terms of nu-
cleosynthesis, this phase is thus characterized by a decrease in the neon
abundance, an increase in the abundance of oxygen (which was already
before the most abundant element), a signi�cant production of magne-
sium and to a lesser extent of silicon.

6.10 Oxygen fusion (T ≈ 2× 109 K)

The oxygen nucleus is particularly stable because of its doubly magical nature :
Z = N = 8. Consequently, it is necessary to wait for very high temperatures of the
order of 2 billion degrees for the fusion reaction of oxygen nuclei to become possible :

16
8 O + 16

8 O → 32
16S

∗.

For the same reasons as for carbon fusion, the dependence on temperature of this
reaction is similar to that of a non-resonant reaction with a law in exp(−cT−1/3).

The produced sulfur nucleus is in a unstable excited state which decays rapidly
through one of the following channels :

16
8 O + 16

8 O → 32
16S

∗ → 32
16S + γ (+16.541MeV) (256)

→ 31
16S + n (+1.453MeV) (257)

→ 31
15P + p (+7.677MeV) (258)

→ 28
14Si + α (+9.593MeV) (259)

→ 24
12O + 2α (−0.392MeV) (260)

→ 30
15P + 2

1H (−2.406MeV) (261)

Of these di�erent channels, the most likely are the reactions 258 and 259.

At such high temperatures, the produced deuterium is immediately photodisintegra-
ted. As for the emitted protons, neutrons and α particles, they are immediately re-
captured by other nuclei (see the reaction grid in the powerpoint slides). In addition,
a growing number of photodisintegration reactions becomes possible, balancing the
inverse fusion reactions (for example 29

14Si + γ ↔ 28
14Si + n, 30

15P + γ ↔ 29
14Si + p).
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In terms of energy, the balance of all these reactions is complex ; on average, ap-
proximately 16 MeV are released per pair of merging oxygen nuclei.

In terms of nucleosynthesis, the balance is complex, the main end products
of all the involved reactions is about 90% of silicon and sulfur, followed
by argon, calcium, Ti and Cr.

6.11 �Silicon burning� (T ≈ 3.3× 109 K)

At temperatures of the order of 3 billion degrees, a considerable number nuclear
reactions becomes possible (see reaction grid in the powerpoint slide). Among these,
photodisintegrations of silicon and other heavy nuclei and recaptures of the light
nuclei become very numerous. As the main element at the beginning of this phase
is silicon, we refer to this phase as �silicon burning� ; however, the corresponding
fusion reaction does not occur. Photo-disintegration reactions starting from silicon
lead mainly to the production of free helium nuclei according to the chain :

28Si(γ, α)24Mg(γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α . (262)

These released helium nuclei are recaptured, allowing the synthesis of increasingly
heavy nuclei from silicon :

28Si(α, γ)32S(α, γ)36Ar(α, γ)40Ca . . . (263)

.

Two groups of near-equilibrium reaction are established. The �rst, around silicon,
goes up to 48Ti, with for example the following reactions :

28Si(α, γ)32S(γ, p)31P(γ, p)30Si(γ, n)29Si(γ, n)28Si . (264)

The second group goes from 52Cr to 56Fe. At the interface between these 2 groups in
near-equilibrium, α captures are favored, which results in the destruction of silicon
in favor of elements of the Fe group.

In terms of nucleosynthesis, the balance is complex, the main end products
of all the involved reactions are, in decreasing order of abundance : iron,
nickel, Cr and Ti.
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6.12 Nuclear statistical equilibrium(T ≈ 5− 7× 109 K)

We have seen that the network of nuclear reactions has become considerably more
complex as the temperature rises. Beyond a threshold, kT becomes non-negligible
compared to the energies involved in most reactions. Therefore, all fusion reactions
and photodisintegrations become possible. A statistical equilibrium is established
between all direct and inverse reactions. The powerful tools of statistical physics
allow us to describe the statistical distribution of di�erent nuclei by simple functions
depending essentially on the temperature, we are talking about nuclear statistical
equilibrium. We have already met above with the photodisintegration of neon the
equivalent of the Saha equation governing this thermodynamic equilibrium (eq. 250).
So, now considering a neutron capture-release reaction :

A
ZX ↔ A−1

Z X + n, (265)

we have by noting N the abundances :

NA−1
Z Nn

NA
Z

∝ T 3/2 exp(−QA,Z,n/kT ), (266)

with
QA,Z,n = (Mn +MA−1

Z −MA
Z )c2. (267)

Similarly, we can write :

NA−2
Z Nn

NA−1
Z

∝ T 3/2 exp(−QA−1,Z,n/kT ). (268)

Proceeding step by step until separating the complete nucleus into each of its com-
ponents, then multiplying the corresponding equations (eqs. 266, 268, . . .), we �nally
get :

NA
Z ∝ NZ

p N
A−Z
n T−3(A−1)/2 exp(−∆MA,Z/kT ), (269)

where−∆MA,Z is the binding energy of the nucleus A
ZX. Eq. 269 gives the abundance

of each of the nuclei. In practice, the numbers of free protons and neutrons Np

and Nn are not imposed ; the total number of nucleons is imposed (free or in a
nucleus). Under this constraint, it can be shown that at a not too high temperature
(kT < −∆MA,Z), N

A
Z takes a maximum value for nuclei having the largest binding

energy per nucleon : fAZ
≡ −∆MA,Z /A. If this nuclear reaction phase goes slowly

enough, the β decays have time to bring the nuclei to the stability valley of nuclei.
In this case, the most abundant element (maximum of fAZ

) is 56
26Fe. On the other

hand, if it happens extremely quickly (type Ia supernovae), β decays do not have
time to take place, the ratio between total number of protons and neutrons (free or
not) remains unchanged and very close to 1, and the most abundant element is 56

28Ni.

As we will see, when the �iron core� reaches the Chandrasekhar's limiting mass,
it starts to collapse and the temperature increases very quickly, the equilibrium
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governed by eq. 269 moves in the direction of photodisintegrations, and therefore an
increase abundance of light particles (helium, protons, neutrons) at the expense of
heavy nuclei. The energy balance then becomes endothermic, which as we shall see
accelerates the core collapse triggering a type II supernova explosion.

7 Polytropic gaseous spheres

In the previous chapters, we have studied the di�erent physical phenomena that
must be modeled to describe the internal structure of stars. In this chapter, we
consider simpli�ed models of stars called polytropes. Their simplicity will allow us
to present some fundamental features of stars such as the Chandrasekhar's limiting
mass.

A polytrope is a �uid where the pressure and density are related by a power law of
the following form :

P = Kργ = Kρ1+1/n , (270)

in which n is called the polytropic index.

7.1 Lane-Emden equation

We want to model a sphere in hydrostatic equilibrium obeying to the polytropic
relation 270. From the equation of hydrostatic equilibrium, we have :

−1

ρ

dP

dr
=

Gm

r2
=

dφ

dr
, (271)

where φ is the gravitational potential. This potential is obtained by solving the
Poisson equation : ∇2φ = 4πGρ. Under our hypothesis of spherical symmetry, it
reads :

1

r2

d

dr

(
r2dφ

dr

)
= 4π G ρ . (272)

Combining equations 270, 271 and 272, we will obtain a very simple 2nd order
di�erential equation describing the internal structure of a polytrope. We start by
developing the left hand side of equation 271 and using equation 270. We have :

dφ

dr
= −1

ρ

dP

dr
= −K γ ργ−2 dρ

dr

= −K γ

γ − 1

dργ−1

dr
(273)
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We de�ne the surface of the polytrope by the condition P (R) = ρ(R) = 0. As we
are always free to add a constant to a potential, we choose this constant such that
the gravitational potential is zero at the surface : φ(R) = 0. We integrate now the 2
members of equation 273. φ(R) = 0 �xes the integration constant and we get :

φ(r) = −K γ

γ − 1
ρ(r)γ−1 = −K(n+ 1)ρ(r)1/n , (274)

or :

ρ(r) =

[
−φ(r)

K(n+ 1)

]n

. (275)

Substituting the relation in the Poisson equation, we �nally get :

1

r2

d

dr

(
r2dφ

dr

)
= 4π G ρ = 4π G

[
−φ

K(n+ 1)

]n

(276)

With the following change of variables, we can simplify this equation.

z = Ar , w =
φ

φc

=

(
ρ

ρc

)1/n

(277)

is the new dependent variable, with φc and ρc the central values of φ and ρ :

A2 =
4πG

(n+ 1)nKn
(−φc)

n−1 =
4πG

(n+ 1)K
ρ

n−1
n

c . (278)

After some algebra, it is easily seen that these new variables change eq. 276 into :

1

z2

d

dz

(
z2dw

dz

)
+ wn = 0 . (279)

This di�erential equation is called the Lane-Emden equation. At the core :

w(0) = 1 , dw/dz(0) = 0 .

We have thus to solve a Cauchy problem. This is easily done numerically. The
numerical integration is stopped at the point zn where w is zero, which de�ned the
surface of the polytrope.

The advantage of this dimensionless formulation of the problem is that the Lane-
Emden equation is very simple and only depends on the polytropic index n. Once
this equation is solved for a given n, the solution can be used for all polytropic
sphere with this index.
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7.2 Some polytropes

For 3 values of n only, the Lane-Emden equation has an analytical solution :

n = 0 (ρ cst.) : w(z) = 1− z2/6

n = 1 (γ = 2) : w(z) = sin z/z

n = 5 (γ = 6/5) : w(z) =
(
1 + z2/3

)−1/2

n = 0 corresponds to spheres with constant density. For n = 5, w tends asymptoti-
cally to 0 as z tends towards in�nity. The surface as de�ned above is thus at in�nity.
n = 5 is a critical value : for n < 5, the solutions have a �nite radius and for n ≥ 5
the radus.

We now consider di�erent values of n useful for stellar physics applications.

n=0

As said before, this corresponds to a sphere of constant density. The solution is a
parabola. The constant density is equal to the mean density :

ρ =
3M

4πR3
. (280)

The mass of each sphere is simply :

m(r) =
4π

3
r3ρ = M

r3

R3
(281)

Using these relations, we get for the pressure :

P (r) =
∫ R

r

Gmρ

r′2
dr′

=
3GM2

8πR6
(R2 − r2) .

We assume now we have an ideal gas, the temperature pro�le is then also parabolic :

T (r) =
P

ρ

µmu

k
=

GM

R3

µmu

2k
(R2 − r2) . (282)

In an ideal gas with constant density, we also have :

d lnT

d lnP
= 1 . (283)

We have seen previously that convective instability occurs if
∇ ≡ d lnT/d lnP > ∂ lnT/∂ lnP |s ≡ ∇ad. In an ideal gas, ∇ad = 2/5.
A constant density sphere is thus extremely unstable with respect to
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convection. Indeed, in deep stellar layers where the heat capacity is huge, we have
seen before that values of∇ very slightly larger than∇ad enable an e�cient transport
of energy by convection. What would happen to a constant density star ? The huge
amount of heat lost by the core due to convection would lead to its quick contraction
(see the Virial theorem, Sect. 8.1). The density would thus quicly increase in the
core, generating a density gradient : d ln ρ/d lnP > 0. Hence, ∇ ' 1− ln ρ/d lnP >
0 would decrease until it becomes close to ∇ad. The very strong convective
instability of constant density models explains thus why the density is
decreasing from the center to the surface of stars.

n=1 (γ=2)

We have seen that we have the analytical solution w(z) = sin z/z in this case. This
function has an in�ection point at the surface. For n < 1, d2w/dz2 < 0 from the
center to the surface. For n > 1, the function w(z) has an in�ection point below the
surface. We will also see later that n = 1 is a limit case for the mass-radius relation :
for n < 1, the radius increases with the mass, for n > 1 the radius decreases with
the mass.

n=3/2 (γ=5/3)

This case is very important because we can associate to it 2 physical situations often
encountered in stars.

The �rst one corresponds to a completely degenerated non-relativistic gas. We
have seen in chapter 4.5 (eq. 136) that in this limit case, the pressure is completely
dominated by degenerated electrons and is given by :

P = Kρ5/3 (284)

with

K =

(
3h3

8π

)2/3
1

5me(muµe)5/3
. (285)

Note that K depends only on fundamental physical constants and the molecular
weight per electron (µe).

The second one corresponds to an e�cient convective zone. We have seen previously
that, except near the surface, convection is very e�cient in stars because of the very
high enthalpy and temperature (h ≈ cpT ) in stellar interiors. As a consequence,
the strati�cation of convective layers is quasi-isentropic (adiabatic). Consider an
ideal completely ionized gas without radiation pressure. In this case, we have in a
convective zone :

d lnP

d ln ρ
' Γ1 '

5

3
(286)
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Integrating this relation, we �nd again P = Kρ5/3. Note however that now K is
no longer �xed by the fundamental constants. It is not constant in a set of fully
convective models with di�erent masses. Hence, fully convective models do not obey
a mass-radius relation (see Sect. 7.3).

n=3 (γ=4/3)

This case is also very important. It corresponds to the limiting case of a completely
degenerated extremely relativistic gas. We have seen in eq. 138 that, in this
case, the pressure is given by :

P = Kρ4/3 (287)

with

K = 2πc (3h3)1/3

(
1

8πmuµe

)4/3

=
1.2435× 1015

µ
4/3
e

(cgs) (288)

We will see later the special properties of completely degenerated extremely relati-
vistic spheres.

n=5 (γ=6/5)

We have seen that this case, of which the analytical solution is given at the beginning
of this subsection, corresponds to the limit between polytropes of �nite and in�nite
radii.

n=∞ (γ=1)

This corresponds to an isothermal sphere. Indeed, in an ideal isothermal gas,
P = kT/(µmu)ρ ∝ ρ, which corresponds to n → ∞ in Eq. 270. The �Lane-Emden
equation� is here obtained through another change of variable (w∞ has no meaning).
Eq. 273, which is still valid, reads with γ = 1 : dφ/dr = −Kd ln ρ/dr. Integrating it
and assuming for simplicity that the potential is zero at the center gives :

ρ

ρc

= e−φ/K . (289)

As we did before for �nite polytropic indices, we substitute this equation in the
Poisson equation. We now introduce the following change of variable :

w = φ/K , z = Ar , A2 = 4πGρc/K . (290)

With this change of variable, the equivalent of the Lane-Emden equation for the
isothermal sphere reads :

1

z2

d

dz

(
z2dw

dz

)
= e−w . (291)
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The boundary conditions are here di�erent : w(0) = 0 (not 1) and dw/dz(0) = 0.
As for the other polytropes with n ≥ 5, the isothermal sphere has an in�nite radius.
The solution is here regular at the center by construction.

It is useful to notice that a simpler singular solution is often used in stellar dynamics
and extragalactic astrophysics. With our notation, it reads : w(z) = 2 ln(z)− ln(2).
The corresponding density pro�le reads :

ρ(r) =
K

2πG

1

r2
=

kT

2πµmuG

1

r2
∝ 1

r2
. (292)

It can be shown that the asymptotic behaviors (r →∞) of the regular and singular
isothermal spheres coincide. In particular, m(r) behaves asymptotically as m(r) ∝ r
and thus limr→∞m(r) =∞.

7.3 Mass-radius relation

We have established at the very beginning equation. 13 giving the mass of a sphere
of radius r :

m(r) =
∫ r

0
4πr2ρdr (293)

With the change of variables 277, we have ρ(r) = ρcw(z)n and r2dr = (1/A)3z2dz,
so that

m(r) = 4π
1

A3
ρc

∫ z

0
wn z2 dz = 4π

r3

z3
ρc

∫ z

0
wn z2 dz (294)

We use now the Lane-Emden equation 279, which gives :

m(r) = −4π
r3

z3
ρc

∫ z

0

d

dz

(
z2dw

dz

)
dz = − 4π r3 ρc

1

z

dw

dz
. (295)

Integrating over the whole sphere, we have thus in particular :

M = − 4π R3 ρc
1

zn

dw

dz
(zn) . (296)

For the total radius, we have from eq. 277 :

R =
zn

A
= zn

[
(n+ 1)K

4πG

]1/2

ρ
1−n
2n

c (297)

Substituting this relation into eq. 296, we �nd thus :

M = − 4π

[
(n+ 1)K

4πG

]3/2

z2
n

dw

dz
(zn) ρ

3−n
2n

c (298)
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These 2 last equations relate the total mass and radius to ρc. ρc can thus be elimi-
nated, which gives :

R ∝ ρ
1−n
2n

c ∝ M
1−n
3−n ,

more precisely :

R = z
1+n
3−n
n

[
(n+ 1)K

4πG

] n
3−n

[
−4π

dw

dz
(zn)

]n−1
3−n

M
1−n
3−n . (299)

This relation is fundamental, this is the mass-radius relation of polytropic
spheres. Note that the proportionality constant in eq. 299 depends on the poly-
tropic index n and the constant K. This equation relates thus the masses and radii
of a set of polytropes with same n and K. This is the case for non-relativistic
completely degenerated gaseous spheres. They obey thus to a mass-radius relation
R ∝ M−1/3. On the contrary, although completely convective spheres are also ap-
proximated by n = 3/2 polytropes, they do not obey a mass-radius relation because
K is not constant for them.

Depending on the values of n, there are two possibilities for the mass-radius relation.
If n < 1, the exponent of M in 299 is positive ; the radius of the polytrope increases
thus as the mass increases. On the contrary, if 1 < n < 3, the exponent of M is
negative and the radius of the polytrope decreases as the mass increases. A special
analysis will be dedicated to the limiting case n = 3. This trend can be understood
through the following reasoning. Consider an initial polytropic model with given
mass M and radius R. I try to build now a second model by multiplying the mass
of each layer by a given factor q > 1, keeping the same radius. I note with a " ' "
the new structure. The di�erent functions of r are thus transformed as follows :

m(r) → m′(r) = q m(r) (300)

As the volume is kept constant :

ρ(r) → ρ′(r) = q ρ(r) (301)

For the pressure, using the polytropic relation (eq. 270), we have :

P (r) → P ′(r) = K(ρ′)1+1/n = q1+1/n P (r) . (302)

The weight of the gas column is given by weight(r) =
∫ R
r (Gmρ)/r2dr, we have thus :

Weight(r) → Weight′(r) =
∫ R

r
(Gm′(r)ρ′(r))/r2 dr = q2 Weight(r). (303)

We see thus that, if n < 1 (and q > 1), P ′(r) > Weight′(r). The pressure increased
more than the weight of the gas column. The resultant of the forces is thus towards
the exterior and the star must expand until the hydrostatic equilibrium is es-
tablished. On the opposite, if n > 1, the weight increased more than the pressure
(P ′(r) < Weight′(r)). The weight wins over the pressure, the resultant of the force
is towards the center and the star must contract.
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7.4 Chandrasekhar's limiting mass

We study now in more detail the case of an n = 3 polytrope corresponding to a
relativistic completely degenerated gas. With 3 − n = 0 on the denominator of the
exponent, we see that it is not possible to use equation 299. We must come back to
equation 298, which gives for n = 3 :

MCh = − 4π
[
K

πG

]3/2

z2
3

dw

dz
(z3)

=

(
2

µe

)2

1.459 M� . (304)

This result is fundamental, it shows that in any set of n = 3 polytropic spheres with
same constant K, the total mass is constant and given by eq. 304. For relativistic
completely degenerated gaseous spheres, this mass is called the Chandrasekhar's
limiting mass4. In advanced stages of stellar evolution, the very dense stellar core
can reach relativistic complete degeneracy. In advanced stages of stellar evolution,
there is no longer hydrogen in the core and µe ' 2 (see eq. 144). The Chandrasekhar's
limiting mass is then MCh ' 1.459M�.

Before intrepreting this limiting mass, we consider the radii of n = 3 polytropes.
Equation 297 relates the radius and central density of polytropes. We start with an
n = 3 polytrope in hydrostatic equilibrium having the Chandrasekhar's mass MCh

and an initial radius R. We expand (or contract) now this model by multiplying
the radii of all spheres inside the star by the same factor x (keeping their masses
constant). As before, I note with a " ' " the new structure. We have thus :

r(m) → r′(m) = x r(m) . (305)

The mass is kept constant and the volume is multiplied by x3, so that :

ρ(m) → ρ′(m) = ρ(m)/x3 . (306)

For the pressure, using the polytropic relation P = Kρ4/3, we have :

P (m) → P ′(m) = Kρ′(m)4/3 = Kρ(m)4/3/x4 = P (m)/x4 . (307)

The weight of the gas column above the sphere of massm isWeight(m) =
∫M
m Gmdm/(4πr4),

so that :

Weight(m) → Weight′(m) =
∫ M

m
Gmdm/(4πr′4) = (m)/x4 . (308)

4Subrahmanyan Chandrasekhar (Lahore 1910 - Chicago 1995) was one of the greatest astro-
physicist of his time. He was awarded the 1983 Nobel Prize for Physics for "...theoretical studies
of the physical processes of importance to the structure and evolution of the stars".
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The initial model was in hydrostatic equilibrium with P (m) = Poids(m) ∀m. Ex-
panding or contracting the star, equations 307 and 308 show that the pressure and
weight are divided by the same factor x4, remaining equal. The polytropic relation
P = Kρ4/3 ensures thus that the hydrostatic equilibrium is automatically maintai-
ned as the star contracts or expands. The radius of the star is thus free.

We can come back now to the mass. Why is the mass �xed to a unique possible
value ? ? In order to understand that, imagine the following. We start again from
a polytrope n = 3 having the Chandrasekhar's mass and being in hydrostic equi-
librium. We add next a spherical shell of matter around it, without changing the
inner part. Adding this shell increases the weight of the gas column in the inner part.
It is now larger than the pressure, so that the star starts to contract. Suppose as
a simpli�cation that the contraction is homologous (the initial radii of the spheres
are multiplied by the same factor x(t) at each time of the contraction). The above
derivations remain then valid. In particular, at each time of the contraction, the
pressure and weight are divided by the same factor x(t)4. We started from a dese-
quilibrium of the forces (weight > pressure). It is thus maintained and the collapse
continues as long as the physical conditions justifying n = 3 (relativistic complete
degeneracy) remain valid. You can do the same reasoning by removing a super�cial
shell from the star. In this case, the weight became smaller than the pressure and
the star expands as long as relativistic degeneracy is maintained.

7.5 White dwarfs

At the end of the evolution of low to intermediate mass stars, their envelope is
expelled. What remains is a compact star mainly composed of carbon and oxygen
without nuclear reactions. It is called a white dwarf. Because of the high densities,
the electron gas is degenerated in white dwarfs. We have seen that non-relativistic
completely degenerated gaseous spheres are n = 3/2 polytropes obeying to a mass-
radius relation :

R ∝ M−1/3. (309)

The trend of this relation remains valid in white dwarfs, they also obey to a mass-
radius relation : the larger their masses, the smaller their radii. Because of the
absence of nuclear reactions, white dwarfs are slowly cooling. We can assume that
the mass of an isolated white dwarf remains constant during its evolution, its radius
remains thus also constant because of the mass-radius relation. Its luminosity and
e�ective temperature decrease slowly with L ∝ T 4

eff (equation 10 with constant R).

We now consider a set of white dwarfs with increasing masses below MCh. This
typically corresponds to a white dwarf slowly accreting matter from a companion
(a red supergiant for example). As the mass of the white dwarf increases, its radius
decreases (eq. 309) and thus the density increases. When ρ reaches values of about
2 tons/cm3 (see eq. 145), the electron gas becomes relativistic. This occurs when
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the mass approaches the Chandrasekhar's limiting mass MCh. Because the electrons
saturate to the speed of light, the star encounters more and more di�culties to sus-
tain its weight and the radius decreases quickly : R → 0 and dR/dM → −∞ as
M → Mch (n → 3). What follows is extremely violent (as always when the Chan-
drasekhar's limiting mass is reached !). Due to the huge densities, carbon burning
starts near the core. As we will see later, nuclear burning cannot be controled in
a degenerated gas. Within a few seconds, carbon and oxygen are transformed into
nickel, whith a huge production of energy. This energy is larger than the binding
energy of the star (

∫M
0 Gmdm/r) and the star explodes as a huge thermonuclear

bomb. This phenomenon is called a type Ia Supernova.

7.6 Potential energy of a polytrope

The gravitational potential energy of a a sphere in hydrostatic equilibrium is

EG = −
∫ M

0

Gm

r
dm . (310)

−EG is its binding energy, the work required to separate each mass element of the
star to an in�nite distance from each other. For a polytrope of index n < 5, mass
M and radius R, it can be shown that this relation simpli�es to :

Eg = − 3

5− n

GM2

R
. (311)

This relation does not apply to in�nite radius polytropic spheres (n ≥ 5). As we
will see later, it is useful to determine the potential energy of a truncated isothermal
sphere. First, it is easy to see that the potential energy of the truncated singular
isothermal sphere of mass M and radius R is :

Eg = −GM
2

R
. (312)

The potential energy of the truncated regular isothermal sphere of mass M and
radius R is :

Eg = −q(zs)
GM2

R
, (313)

where limz→∞ q(z) = 1 and zs = AR = (4πGρcµmu/(kT ))1/2R.
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Stellar Evolution

In this second part, we analyse in detail how stars evolve as a function of time.
The Virial theorem as well as homologous relations will be very useful. We begin by
establishing them.

8 Theorems and useful relations

8.1 Virial theorem

Consider a gaseous sphere in hydrostatic equilibrium. We start from the equation of
hydrostatic equilibrium dP/dm = −Gm/(4πr4), we multiply both sides by 4πr3 and
integrate over the mass. Integrating by parts the left hand side and using dm/dr =
4πr2ρ gives : ∫ m

0
4πr3 dP

dm
dm = 4πr3P (m)−

∫ m

0
12πr2 dr

dm
Pdm

= 4πr3P (m)− 3
∫ m

0

P

ρ
dm

= −
∫ m

0

Gm

r
dm . (314)

Extending the integration domain over the whole star and assuming that the surface
pressure is negligible gives :

3
∫ M

0

P

ρ
dm =

∫ M

0

Gm

r
dm . (315)

For a monoatomic non-relativistic ideal gas, we have :

P

ρ
=

2

3
u . (316)

This relation is easily deduced from the pressure integral established in the �rst
part (sect. 4.3, eq. 120). As long as v << c, the kinetic energy of a particle with
momentum p and speed v is E = vp/2. The pressure integral reads thus :

P =
2

3

∫ ∞

0
E n(E) dE =

2

3
uv =

2

3
ρ u, (317)

where n(E) is the density of particles per unit volume and energy and uv is the
intenal energy per unit volume. Note that the possible degeneracy of the gas does
not a�ect the validity of eq. 316. On the opposite, if the radiation pressure is non
negligible compared to the gas pressure, eq. 316 is no longer valid (the energy of a
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photon is E = hν = cp, not cp/2 !). We �nd thus for a sphere of monoatomic, ideal,
non-relativistic gas in hydrostatic equilibrium :

EG = −2 Ei , (318)

where EG = −
∫M
0 Gmdm/r is the gravitational potential energy of the whole star

and Ei =
∫M
0 udm is its total internal energy (the sum of the kinetic energies of all

particles of the star). Suppose now that a star has contracted, releasing the potential
energy −∆Eg. Eq. 318 gives : ∆Ei = −(1/2)∆EG. In other words :

During the contraction of a star maintaining the hydrostatic equilibrium,
half of the released potential energy is converted into an increase of the
internal energy.

8.2 Homologous relations

Although approximate, homologous relations are a good tool for the understanding
of the main tendencies in stellar evolution. Stellar models are called �homologous�
under the following condition. For each model and each local physical quantity (noted
y), we can write

y(r) = yy(x) fy(M,R) , (319)

where x = r/R and yy(x) remains the same function from a model to another one.
In other words, the pro�le from the center to the surface of a given physical quantity
is the same from a model to another one, except for a multiplicative factor. Under
this condition of homology, the functions fy(M,R) can be obtained. We start with
the function m(r). We have simply :

m(r) = mm(x)M. (320)

From the relation ρ = (dm/dr)/(4πr2) and using eq. (320), we simply �nd :

ρ(r) =
1

4πx2

dmm

dx
M/R3 = ρρ(x)

M

R3
. (321)

For the pressure, from the integrated equation of hydrostatic equilibrium and using
equations (320) and (321), we get :

P (r) =
∫ R

r

Gmρ

r2
dr =

∫ 1

x

Gmm(x) ρρ(x)

x2
dx M2/R4 = PP (x)

M2

R4
. (322)

To get the temperature, we assume here that the gas is ideal, non-degenerated and
without radiation. We also assume the homologous relation for the mean molecular
weight : µ(r) = µµ(x)µ. However, µµ(x) is usually very di�erent for two models at
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di�erent evolution stages, so that the dependence with respect to µ in homologous
relations is only indicative. We �nd then :

T (r) =
mu

k

µ(r)P (r)

ρ(r)
= TT (x)

µM

R
, (323)

Finally, we want to know the luminosity in a radiative zone. I remind the equation
of radiation transport in stellar interiors (eq. 39) :

L = −16πr2acT 3

3κρ

dT

dr
. (324)

The main factors in eq. 324 are deduced from the above equations. The only one
requiring a closer look is the temperature gradient :

dT

dr
(r) =

dTT

dx
(x)

µM

R2
. (325)

We have thus :

L(r) = −16πac

3κ0

x2TT (x)3

ρρ(x)

dTT

dx
(x) (µ4/κ)M3 ∝ (µ4/κ)M3. (326)

We assume now a power law for the opacity : κ = κ0 ρ
bT a. This gives :

L(r) = LL(x)µ4−aM3−a−bRa+3b = LL(x)µ7.5M5.5R−0.5, (327)

where we used a Kramers law (a = −3.5, b = 1) for the last equality. We note
the rapid growth of the luminosity with the mass, this is the mass-luminosity
relation. We will come back to it several times in the next chapters. As we said
above, the dependence with respect to µ in homologous relations is only indicative.
It explains why the luminosity of a star increases as it evolves during the main
sequence phase.

9 Proto-stellar phase : gravitational collapse

The disk of our galaxy and other spiral galaxies is mainly composed of large gaseous
regions and stars. Its chemical evolution is due to the exchanges between these two
components. On the one hand, parts of interstellar clouds can collapse, leading to
stellar formation. On the other hand, stars enrich the interstellar medium with heavy
elements synthesized in their core during advanced stages of evolution through winds
and when some of them explode as a supernova. I begin with a reminder of the 3
types interstellar clouds.
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9.1 Interstellar clouds

Molecular clouds

As indicated by their name, they are mainly composed of hydrogen molecules (H2).
Their temperatures typically are around 10-15 K, which is not much larger than the
cosmological background (3 K) ; they are the coldest clouds. The number densities
are of the order of 1010 molecules / m3. The hydrogen atoms of a cold and denser
gas combine to form molecules. Molecular and atomic clouds are thus closely linked :
due to local contractions and cooling, parts of atomic clouds can become molecular
clouds. To complete their identity card, their masses are of the order of 104-105 M�
and their sizes are in the range 1-50 pc typically. Stars form from these mole-
cular clouds. Their study is thus essential for understanding the process of stellar
formation. As a consequence of their very low temperatures, their thermal radiation
�ux is negligible (Stefan law) and in the radio domain (Wien law). Moreover,H2 does
not have observable lines in this domain, which is an obstacle to their direct charac-
terization. To map them ; we can mainly use the radio emission at λ=2.6 cm of the
CO molecule. Some molecular clouds are however observable in the visible thanks
to their illumination by massive very luminous stars formed from them (see e.g. the
wonderful images of the aquila nebula, . . .). Isolated parts of molecular clouds, the
Bok globules can also be detected thanks to the occultation of the stars behind
them.

Atomic clouds : HI regions

As indicated by their name, they are mainly composed of atomic hydrogen. They are
slightly hotter and less dense than the molecular clouds : T ≈ 30− 80 K, 107 − 109

particles /m3. They are the main contributors in mass to the interstellar medium.
However, they are particularly di�cult to detect : too cold for thermal radiation
and not dense enough for occultation. The hyper�ne line at 21 cm corresponding
to the spin change of the electron at the fundamental level of an hydrogen atom
constitutes the main observational source to characterize and map them.

Ionized clouds : HII regions

As indicated by their name, they are mainly composed of ionized hydrogen, in other
words free protons and electrons, constituting what is called a plasma. As in all
plasmas, their temperatures are very high, of the order of 8000 K. On the opposite,
their densities are extremely low : 102 − 106 particles /m3, ≈ 10−25 times the air !
These regions are the product of the interaction between the interstellar medium
and the energetic radiation from nearby massive and very luminous O-B stars. This
radiation heats the gas up to high temperature, ionizes the atoms and/or bring their
electrons to higher bound levels. As the electrons come back to the lower levels,
photons are emitted, producing emission lines in the visible.
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9.2 Gravitational instability, isothermal collapse and frag-
mentation

Clouds in the sky don't collapse because their auto-gravity, the gravitational attrac-
tion between each part, is completely negligible because of their very small masses.
Any attempt to destabilize them produces a pressure gradient opposed to the col-
lapse. On the opposite, molecular clouds and Bok globules are extremely large. Be-
cause of their very high masses and auto-gravity, they are in a precarious equilibrium.
This can be quanti�ed through a well-known criterion called the Jeans criterion.

9.2.1 Jeans criterion

We have seen that the main di�erence between a cloud in our sky and another in our
galaxy is the size and the mass. The Jeans criterion gives the order of magnitude of
the limiting sizes and masses beyond which a cloud is unstable due to its too high
auto-gravity.

Size criterion :
A cloud with a size R signi�cantly larger than the Jeans size RJ is gravitationally
unstable, with

RJ =

(
27

16q2πG < ρ >

)1/2

vs ≈ τff vs (328)

< ρ > is its mean density, v2
s = ∂P/∂ρ|T ' P/ρ = kT/(µmu) is the square of the

isothermal sound speed, τff =
√
π/(G < ρ >) is the free-fall time-scale, of the order

of the dynamical time-scale and q2 ' 1 is a parameter (see below).

Mass criterion :
A molecular cloud with a mass M signi�cantly larger than the Jeans mass MJ is
gravitationally unstable, with

MJ =
27

16

(
3

πq3
2

)1/2 (
k

µmuG

)3/2

T 3/2 < ρ >−1/2 . (329)

The typical initial condition of a molecular cloud gives MJ ≈ 400M�.

Di�erent ways to establish this criterion have been proposed in the literature, the
results di�er by a factor of the order of unity. I only present here the most realistic
proof. We approximate the cloud by an isothermal sphere in hydrostatic equilibrium.
The surface pressure is always strictly larger than zero (remind that the pressure of
an isothermal sphere tends towards 0 at an in�nite radius, see Sect.7). The Virial
theorem (eq. 314) gives the value of this pressure :

PS =

[
3
∫ M

0

P

ρ
dm−

∫ M

0

Gm

r
dm

]
/(4πR3)
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=
cvTM

2πR3
− q

GM2

4πR4
, (330)

where we assumed that the gas is ideal with a constant temperature. We have shown
previously (eq. 312) that q = 1 for the truncated singular isothermal sphere. In the
regular case, q is a function of zs (see end of Sect. 7.6).

Consider now a contraction of the sphere (produced by increasing slightly the ex-
ternal pressure). Assuming that the hydrostatic equilibrium is maintained, eq. 330
remains valid. We assume that the mass and temperature are �xed during this
contraction. Eq. 330 explicitely shows how the surface pressure changes as R de-
creases. It is easily seen that the function PS(R) has a local maximum at

Rmax =
4q2
9

µmu

k

GM

T
, (331)

where q2 = 1 for the singular case and q2 = q(1 − (1/4)∂ ln q/∂ lnR|M,T ) for the
regular case. Let the radius R be larger than RJ . Replacing < ρ > by 3M/(4πR3)
in the de�nition of RJ (eq. 328) and isolating R in the inequality R > RJ gives
R < Rmax. Eq. 330 tells us that dPS/dR > 0 at this R. The contraction leads
thus to a decrease of the surface pressure. As we initially increased the external
pressure Pext, we gets Pext > PS and the star contracts even more. This corresponds
to an unstable equilibrium. We �nd directly through the same reasoning that the
equilibrium is stable for R < RJ . Finally, the mass criterion 329 is simply obtained
by taking the power 3 of the radius criterion and multiplying by the mean density.

The main assumption for the establishment of the Jeans criterion was to consider
an isothermal contraction of an isothermal cloud. It is important to justify now this
hypothesis. The gravitational collapse is a dynamical process where the equilibrium
of the forces is broken. The time-scale of this process is thus the dynamic time
introduced in the �rst chapter (eq. 24) :

τdyn =
√
R3/GM ≈ 1/

√
Gρ. (332)

With the typical initial density of a molecular cloud, the time-scale of the gravi-
tational collapse is 1/

√
Gρ ≈ 106 years. We will introduce in Sect. 10.1.2, eq. 341

the Helmholtz-Kelvin time-scale τHK associated to processes driven by a thermal
desequilibrium. For the collapsing sphere with radius RJ and mass MJ , τHK ≈
GM2

J/(RJL). Taking L = 4πR2
JσT

4 and the typical initial mean density and tempe-
rature of the molecular cloud, we get τHK ≈ 100 years, which is much smaller than
the dynamic time. This means that the cloud has all the required time to maintain
thermal equilibrium with its environment during its initial collapse. We conclude
that the temperature is approximately constant during a �rst phase of the collapse.
With a constant temperature and an increasing density, eq. 329 tells us that the
Jeans mass decreases during the collapse. This explains the cloud fragmentation
during the isothermal phase of the collapse.
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As a summary, during a �rst phase, a part of the molecular cloud of 102−
103 solar masses collapses, keeping a more or less constant temperature.
During this phase, it fragments into several pieces : the future stars.

9.3 Adiabatic collapse

During the collapse, τdyn ≈ 1/
√
Gρ drops quickly as a consequence of the density

increase. On the opposite, we �nd from equations 328, 329 and the Stefan law :

τHK ∝ T−5/2ρ1/2. (333)

The thermal time-scale increases thus as long as the temperature remains constant.
At some point, both become of the same order of magnitude. Hence, the collapse can
no longer be isothermal. When the thermal time-scale is signi�cantly larger than the
dynamic one, the radiated energy is signi�cantly lower than the released potential
energy. The cloud enters in a phase of adiabatic collapse. Therefore, its tempera-
ture increases and the Jeans mass no longer decreases (Eq. 333). Fragmentation
stops. Equalizing equations 332 and 333, we �nd ρ = k1 T

5/2. Using equation 329
and replacing the constants by their numerical values, we �nd for the mass at the
end of the isothermal fragmentation process :

M > MJ ≈ 0.018 T 1/4M�. (334)

With T ≈ 10 K, this gives for the smallest fragments : M ≈ 0.03 M�. Smaller mass
objects like planets are thus not formed by this process.

For a diatomic gas (5 degrees of freedom), adiabatic increases of temperature and
pressure are related by P/P0 = (ρ/ρ0)

γ = (ρ/ρ0)
7/5, T/T0 = (ρ/ρ0)

γ−1 = (ρ/ρ0)
2/5.

The increase of the pressure �nally goes over the weight of the gas column and a
sharp braking follows. In the central regions where the collapse speed is subsonic,
the hydrostatic equilibrium is quickly established. On the opposite, the collapse
is supersonic in the external layers. The sharp braking leads thus to the formation
of a �rst shock wave at the sonic point where the sound and collapse speed are
equal.

When the core temperature reaches values of the order of T ≈ 2000 K, the hydro-
gen molecules dissociate and, at T ≈ 3000 K, hydrogen atoms are ionized.
These two reactions are endothermic. A signi�cant part of the released potential
energy is pumped by these reactions. As a consequence, the temperature and pres-
sure increase less. More quantitatively, the adiabatic exponent Γ1 ≡ ∂ lnP/∂ ln ρ|s
goes below the critical value of 4/3. We will see in Sect. ?? that this characterizes
dynamic instability : the pressure increases less than the weight of the gas column
and a second collapse of the core starts. Once all the hydrogen is ionized in
the core, the reactions stop and Γ1 goes back up to 5/3 (monoatomic gas, 3 degrees
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of freedom). Therefore, the second collapse stops in the core and a second shock
wave forms at the interface between the fully ionized core and the partially ionized
layers above it.

It is good to notice that the density contrast between the core in hydrostatic equili-
brium and the external layers of the collapsing envelope is huge. The dynamic time
in the core is thus much shorter than in the envelope. Hence, as the core reaches
this stage, the external envelope has not contracted signi�cantly yet and is still on
the isothermal collapse phase, evolving over a much longer time-scale.

9.4 Accretion disk

All bodies have some angular momentum. In molecular clouds, the speci�c (per unit
mass) angular momentum is huge : j ≈ 1021−22 cm−2s−1. The centrifugal force is also
signi�cant compared to gravity. As a consequence, an accretion disk forms where the
resultant of both forces is zero, which is only possible on the equatorial plane. Matter
spirals from the accretion disks and falls on the proto-star. It is eaten by the star
around the poles where gravity overcomes the centrifugal force. Since the provision
of angular momentum from matter arriving at the poles is low, the speci�c angular
momentum of the proto-star goes down and reaches values much smaller than those
of the initial molecular cloud. As an example, in a T Tauri star (typical star in
this phase), the speci�c angular momentum is of the order of j ≈ 1016−17 cm−2s−1,
105 smaller than its initial value ! It is said that the accretion disk ensures the
evacuation of angular momentum. The loss of angular momentum is however
a complex process. During binaries formations (around half of the stars form a
binary system), tidal e�ects lead to a signi�cant transfer of angular momentum
from rotational to orbital motion. Moreover, the magnetic �eld, which is always
present, acts against shear. It prevents thus the establishment of a too strong rotation
frequency contrast between the star and its accretion disk, amplifying strongly the
evacuation of angular momentum. It is said that the magnetic �elds couples the
proto-star with its accretion disk. The accretion disk appears during the phase
of adiabatic collapse and can remain partly during the beginning of the Pre-Main
Sequence phase we are going to describe now.
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10 Pre-Main Sequence (PMS) : Contraction in hy-

drostatic equilibrium

The establishment of hydrostatic equilibrium marks the transition to a new phase in
stellar evolution : the Pre-Main Sequence (PMS) phase. The hydrostatic equilibrium
does not stop stellar contraction. It continues during the PMS phase, but much more
slowly. As we will see, the driver of this contraction is no longer the forces imbalance,
but thermal imbalance. At �rst, the core in hydrostatic equilibrium is completely
hidden by the molecular cloud from which it formed. By de�nition, the e�ective tem-
perature of an object is Teff = (F/σ)1/4, where F is the �ux emitted by this object
from its photosphere, that is its visible surface. The e�ective temperature is thus
initially very low, of the order of the temperature of the surrounding cloud. Next,
the surrounding gas dissipates, revealing the hotter star in hydrostatic equilibrium.

To facilitate the understanding of this phase, it is appropriate to consider �rst a star
evolving with a constant mass. Next, we will discuss how the accretion of matter
a�ects its evolution.

10.1 PMS evolution with constant mass

10.1.1 The Hayashi tracks

Constant mass models predict that the star in hydrostatic equilibrium is initially
entirely convective. This comes from the high opacity of stellar matter at low tem-
peratures. This naturally leads to the de�nition of the Hayashi track. Consider the
set of fully convective stellar models with a given mass (and chemical com-
position). Each of these models has a given location, a point, in the HR diagram.
The whole set of models forms a curve in the HR diagram called the Hayashi track
of mass M . I now simplify the problem to get a simple mathematical view of the
Hayashy track. Because convection is very e�cient in almost the whole star, I assume
that the entropy is constant from the centre to the surface of the star (in reality, this
approximation is not justi�ed near the surface where convection is less e�cient).

The equations to solve to build such simple model are simply the equation of mass
conservation (equation 90), the equation of hydrostatic equilibrium (eq. 92) and the
equation associated to our hypothesis of constant entropy :

dT

dm
= −∇ad

Gm

4πr4

T

P
. (335)

The equation of state relates ρ and ∇ad to the temperature and pressure. This gives
a system of 3 di�erential equations with three unknowns : r, P and T 5. 3 boundary

5This problem is simpli�ed even more if we assume that the gas is ideal, giving a polytropic
sphere of index n = 3/2 (see Sect. 7.2).
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conditions are thus needed. At the centre, we have of course r(0) = 0. De�ning
the photosphere as the layer where the local temperature is equal to the e�ective
temperature and R = r(M) its radius, we get :

T (M) = (L/(4πR2σ)1/4 . (336)

The last boundary condition is obtained by imposing a continuous match with at-
mosphere models (see Sect. 3.9 for more detail). Note that equation 336 introduced a
new variable in the proble : the luminosity L. For each L, the mathematical problem
has a distinct solution. Letting L vary, we get the Hayashi track of mass M in the
HR diagram.

It is important to notice that we did not assume thermal equilibrium in our de�ni-
tion. The fully convective stars constituting the Hayashi tracks are usually not in
thermal equilibrium. This is completely di�erent from the main-sequence. As we
will see, the latter characterizes models with di�erent masses in thermal equilibrium.

The Hayashi tracks of di�erent masses are close quasi-vertical curves occupying the
cold (right) side of the HR diagram. They separate two distinct regions of the HR
diagram : an allowed zone on the hot (left) side and a forbidden zone on the cold
(right) side. This is easily seen by considering the above mathematical problem, but
for another �xed value of ∇ = d lnT/d lnP di�erent from ∇ad. For an ideal gas, the
solution is a polytrope of index n = 1/∇ − 1. It can be shown that these models
occupy a line quasi-parallel to the Hayashi track of same mass, located on its hot
(left) side for ∇ < ∇ad and on the cold (right) side for ∇ > ∇ad. Since convection is
very e�cient, stellar models with ∇ signi�cantly larger than ∇ad in a signi�cant part
of the star are irrealistic. With such temperature gradient, the transport of energy by
convection would be by far too large and incompatible with the boundary condition
eq. 336. On the opposite, we know that ∇ < ∇ad in radiative zones. Models on the
hot (left) side of the Hayashi track are thus fully acceptable, corresponding to fully
or partly radiative stars.

10.1.2 Descent along the Hayashi track of a fully convective star

During this phase of evolution, the star is in hydrostatic equilibrium but not yet in
thermal equilibrium. More precisely, some nuclear reaction such as deuterium and
lithium burning (eqs. 206 and 213) can already occur in low mass stars, but the
power generated by them is smaller than the luminosity :

∫
M εdm < L. The thermal

imbalance is the driver of stellar evolution at this stage, which is easily quanti�ed
by the Virial theorem. We have shown in Sect. 8.1 that Ei = −(1/2)EG. Derivating
this relation gives simply :

dEi/dt = −(1/2)dEG/dt. (337)
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Moreover, the conservation of energy law applied to the full star gives :

dEtot/dt =
∫

M
εdm− L. (338)

With Etot = Ei + EG, these two equations give :

L−
∫

M
εdm = dEi/dt = −(1/2)dEG/dt. (339)

As said above, L −
∫
M εdm > 0 during this phase. We have thus dEG/dt < 0 : the

star contracts as a consequence of the thermal imbalance and dEi/dt > 0 :
its internal energy increases. If there are no nuclear reactions (ε = 0), equation
339 tells us what are the shares of the cake :

Half of the released potential energy is converted into internal energy
and the other half is radiated by the star.

As long as it is entirely convective, the star must thus go down along the
Hayashi track corresponding to its mass.

The time-scale of this phase of thermal imbalance is easily evaluated :

τ ≈ ∆EG

dEG/dt
≈ GM2

RL
, (340)

where we used −∆EG ≈ GM2/R for the order of magnitude of the released potential
energy and, from eq. 339, −dEG/dt ≈ L. This is the Helmholtz-Kelvin time :

τHK ≡
GM2

RL
. (341)

The present Helmholtz-Kelvin time of our Sun is τHK ' 3.1 × 107 years. As long
as the electron gas is non-degenerated6, the increase of the internal energy leads
to an increase of the temperature (for an ideal gas, u = cvT ). We gave in Sect. 5,
eqs. 153 and 154, the approximate kramers laws for the opacity. Their dependence in
T−3.5 shows that the opacity decreases in the core of the star during this phase. We
established in Sect. 3.6, eq. 60 the Schwarzschild criterion for convective instability :
∇rad > ∇ad, with ∇rad ∝ κ (eq. 59). As the opacity decreases, it �nally goes below
the adiabatic gradient and the core of the star becomes radiative. This marks
the end of the descent along the Hayashi track.

6We come back later on the key question of degeneracy
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10.1.3 Evolution along the Henyey track of a partly radiative star

We have seen that partly radiative stars with a mean temperature gradient below the
adiabatic one are located on the hot (left) side of the Hayashi track. As a signi�cant
part of the core becomes radiative, the stellar evolution track turns thus towards
the hot (left) side of the HR diagram. During this turn, the luminosity reaches a
minimum and next increases. This minimum luminosity signi�cantly increases with
the mass of the star. To interpret this, I simplify the problem by assuming that the
stars at the minimum are homologous. The mass-luminosity relation 327 tells us
how the luminosities compare in the radiative core. Extending the homology to the
convective envelope, the luminosity ratio between the surface and the core is constant
and the relation 327 also applies for the surface luminosity. We can eliminate the
radius by using L = 4πR2σT 4

eff , which gives :

Lmin ∝M5.5R−0.5 ∝M5.5L−1/4Teff . (342)

The e�ective temperatures of stars on their Hayashi tracks are close, which �nally
gives :

Lmin ∝M4.4.

We see the great sensitivity of Lmin with respect to the mass.

When the core becomes radiative, the contraction is accelerated in the core and the
opposite in the envelope. The thermal imbalance at the origin of the contraction
explains that. The equation of energy conservation gives at this stage Tds/dt =
ε− dL/dm < 0.

1) As long as the star is entirely convective, the entropy pro�le is quasi-constant
from the center to the near surface layers (see Sect. 3.6.9) and decreases as a func-
tion of time.
2) When the core becomes radiative, a positive entropy gradient ds/dr > 0 appears
there (Sect. 3.6.9). At the same time, the entropy plateau does not decrease signi-
�cantly. By continuity, this means a quick decrease of the core entropy and thus
an acceleration of the core contraction. In other words, the drop in core opacity
increases the evacuation of energy by radiation, which strengthens the thermal im-
balance in the core and accelerates its contraction. While the core contracts quickly,
the envelope doesnt' move signi�cantly and the total radius stops to decrease. As
for the luminosity, it reincreases slightly because of the more e�cient evacuation of
energy from the core.

After the turn in the HR diagram, the evolution track is characterized by a more
or less constant luminosity and increasing e�ective temperature, this part of the
evolution track is often called the Henyey track.
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10.2 Evolution with mass accretion : the birthline

In our study of the pre-main sequence phase, we neglected until now accretion. Howe-
ver, it does not stop sharply when the cloud dissipates and the proto-star appears.
Because of the absence of precise observational constraints, the mass accretion is
usually modeled by a constant rate dM/dt. We de�ne the birtline as the track in
the HR diagram followed by a star in hydrostatic equilibrium accreting mass at a
constant rate. Di�erent accretion rates give di�erent birthlines. On the contrary, the
birthline is quasi-insensitive to the initial mass. The birthline is characterized by
increasing e�ective temperature and luminosity. The radius evolution is a�ected by
deuterium burning, as will be discussed later. The modeling of the evolution of a
star with given �nal mass is a two step process. During step 1, a constant accretion
rate is adopted and the star moves along the birthline corresponding to this rate
until it reaches the desired mass. Next, the modeling is carried on with constant
mass and its track is as we discussed in the previous sections. Let's assume a typical
accretion rate of 10−5M�/year for a population I star. If the mass at the end of the
accretion phase is below ≈ 2.5M�, the star is entirely convective at this time. In
the HR diagram, it is thus at the intersection between the birthline and the Hayashi
track corresponding to its mass and next go down along it. On the contrary, for
2.5M� < M < 6M�, the star already has a radiative core when the accretion stops
and next follows its path along the Henyey track corresponding to its mass. For more
massive stars, nuclear burning starts and a convective core appears while the star is
still accreting matter.

10.3 First nuclear reactions

10.3.1 Nuclear reactions : yes or no ?

As we have seen, the main challenge for nuclear reactions is the crossing of the
Coulomb barrier. This crossing is only possible if the nuclei have high enough kinetic
energies, in other words if the temperature is high enough. For e�cient hydrogen
burning through the p-p chain, temperatures of about 10 − 15 106 K are required.
This naturally leads us to study the evolution of the core temperature during the
pre-main sequence phase. The Virial theorem showed us that the thermal imbalance
before the starting of nuclear reactions leads to a contraction of the star. And this
contraction leads to an increase of the internal energy. This leads us to a key question
of this section : does this increase of internal energy always leads to an increase of the
temperature ? For an ideal non-degenerated gas, u = cvT and the answer is yes. But
is thus always the case out of this ideal case ? To answer this question, we consider
a homologous in�nitesimal contraction of a gaseous sphere. Eqs. 321 and 322 give,
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with a constant mass :

dρ

ρ
= −3

dR

R
, (343)

dP

P
= −4

dR

R
=

4

3

dρ

ρ
. (344)

The thermodynamic quantities obey to an equation of state. For a given chemical
composition, it allows us to express ρ as a function of P and T . Di�erentiating this
function gives :

dρ

ρ
= α

dP

P
− δ

dT

T
(345)

⇒ dT

T
=
α

δ

dP

P
− 1

δ

dρ

ρ
, (346)

where we have introduced the notations α ≡ ∂ ln ρ/∂ lnP and δ ≡ −∂ ln ρ/∂ lnT .
Eliminating dP/P with eq. 344, we �nally get :

dT

T
=

4α− 3

3δ

dρ

ρ
. (347)

This equation answers to our question : since the density must necessarily increase,
the temperature increases if α > 3/4 and decreases if α < 3/4.

A �rst important limiting case is an ideal non-degenerated gas, for which we have
α = δ = 1 (ρ ∝ P/T ) and thus dT/T = (1/3)dρ/ρ. As we already found, the
temperature must increase in this case.

On the opposite, for a completely degenerated non-relativistic gas, di�erentiating
the polytropic relation P = Kρ5/3 gives α = 3/5, δ = 0 and thus dT/T → −∞dρ/ρ.
A small contraction leads thus to a very large drop of the temperature, even though
the internal energy increases ! This surprizing result is important and deserves exa-
mination. In a degenerated electron gas, all �boxes� of low energy are occupied by
electrons. Yet, the contraction decreases the number of cases in the phase space. The
electrons deprived of place must go to another free one at much higher energy. This
energetical cost is very high, larger than the increase of total internal energy due to
the contraction. Where can this energy be found ? The reservoir of internal energy
can be splitted in 2 main contributions : the kinetic energy of the electrons and of the
ions. Moreover, there is no obstacle to a decrease of the ions kinetic energy because
they are non-degenerated. We see thus the solution found by nature : the missing
energy for the electrons is drawn from the ions' thermal reservoir. The contraction of
a sphere of degenerated electrons leads thus to a decrease of the ions' kinetic energy.
Since the ions are non-degenerated, the mean kinetic energy of an ion is 3/2 kT . The
temperature must thus decrease. With the increase of the electrons' kinetic energy
and the drop of the ions' kinetic energy, equipartition of energy (as it is in usual
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gases) is thus completely broken, the mean kinetic energy of an electron becomes
more and more larger than 3/2 kT .

We follow now the core conditions in a diagram log ρ− log T for stars with di�erent
masses (see the powerpoint slides). Based on the degeneracy criterion ??, we can
separate this diagram in 2 regions : one at high temperature and relatively low
density where the gas is non-degenerated and the other at relatively low temperature
and very high density where the electron gas is degenerated. During the begining of
the pre-main sequence phase, the electron gas is always non-degenerated due to the
low densities. At �xed core density, the core temperature increases with the mass of
the star. This is clearly seen by combining the homologous relations 321 and 323 :

Tc = TT (0)
M

R
= TT (0)

M1/3

R
M2/3 (348)

= TT (0)

(
ρc

ρρ(0)

)1/3

M2/3. (349)

More simply, at �xed density, the weight of the gas column and thus the temperature
increases with the mass.

We follow now the track of a star in the log ρ − log T diagram. We start from the
left (low density) with a high temperature much above the degeneracy limit. The
temperature increases as the stellar core contracts (dT/T = (1/3)dρ/ρ) and can
reach the value required for nuclear reactions. On the opposite, for a low mass star,
the degeneracy limit is early crossed. Therefore, the core temperature reaches a
maximum and next drops for the reasons explained above. The nuclear reactions
requiring a temperature above this limit can never start. The critical reaction at the
current evolution stage is the fusion of 2 protons to form a deuterium nucleus. It
requires temperatures of about 107 K.

A rigorous modelling of stellar evolution during the pre-main sequence phase shows
that if the mass of the proto-star is lower than 0.08 M�, the degeneracy prevents the
temperature from reaching the temperature required for the onset of the p-p reaction.
Such stars are called brown dwarfs.

10.3.2 Cooling of brown and white dwarfs

What happens to them? After the burning of minority elements like deuterium and
lithium if the required temperatures can be reached (T ≈ 1−2×106 K for deuterium,
T ≈ 2.5× 106 K for lithium), the electron degeneracy appears and the temperature
drops, making any new nuclear reaction impossible. Homologous relations help to
clarify the shares of the energetical cake during this cooling. We assume that the
ion gas is ideal and the electron gas is completely degenerated and non-relativistic
in what follows. We �rst estimate the increase of the degenerated electrons' kinetic
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energy due to an in�nitesimal contraction. Noting Ee this energy, we deduce from
eqs. 316 and 136 :

Ee =
3

2

∫ M

0

Pe

ρ
dm =

3

2
K1

∫ M

0
ρ2/3 dm

For a homologous contraction, this gives :

dEe

Ee

=
2

3

dρ

ρ
.

Under the same hypothesis, we have for the potential energy Eg = −
∫M
0 Gmdm/r :

dEg

Eg

= −dr
r

=
1

3

dρ

ρ
,

and thus by combining these 2 equations :

dEe

Ee

= 2
dEg

Eg

.

Assuming moreover that the electrons' kinetic energy is much larger than the ions'
one (Ee >> Ei) and using the Virial theorem, Eg = −2(Ei + Ee), we get :

dEe = − Ee

Ei + Ee

dEg ' − dEg.

This last result tells us that, during the contraction, the whole released potential
energy is transfered to the electrons. Therefore, by energy conservation, the
whole radiated energy is taken from the ions : L = −dEi/dt. This illustrates
the decoupling between ions and electrons when the electron gas becomes highly
degenerated.

10.3.3 Structural e�ects of the onset of nuclear reactions

The onset of nuclear reactions modi�es the energetical balance by providing heat in
the core of the star. How does the star react to this change ?

Gravothermal speci�c heat

First, we examine how the temperature reacts to this heat input. The �rst principle
of thermodynamics gives :

dq = Tds = du + P dv = cvdT + (∂u/∂ρ|T − P/ρ2)dρ. (350)

Introducing the notation Γ3 − 1 = ∂ lnT/∂ ln ρ|s, we �nd thus for the di�erential of
the equation of state T = T (ρ, s) :

dT

T
=
ds

cv
+ (Γ3 − 1)

dρ

ρ
. (351)
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We get thus :
dq = cvdT − cvT (Γ3 − 1)dρ/ρ. (352)

Once again, we approximate the stellar reaction to the heat input by a homologous
contraction or expansion. Since the Helmholtz-Kelvin time is much larger than the
dynamical time, we can assume that the hydrostatic equilibrium is maintained :
the driver of the structural changes is the thermal imbalance, not the dynamical
imbalance. With these 2 hypotheses, we can now use the eq. 347, which gives :

dq = cvdT − cvT (Γ3 − 1)dρ/ρ

= cv T
(

4α− 3

3δ
− (Γ3 − 1)

)
dρ

ρ

= cv

(
1− 3δ(Γ3 − 1)

4α− 3

)
dT = c∗dT, (353)

where c∗ is called �the gravothermal speci�c heat�. We examine now the two al-
ready encountered limiting cases of an usual monoatomic ideal gas and a completely
degenerated gas.

Ideal non-degenerated gas

For an ideal gas, α = δ = 1 and Γ3 − 1 = 2/3. Eq. 353 gives thus :

dq = −cvdT, (354)

an unexpected result, providing heat to the star leads to a decrease of its
temperature ! How can we understand that ? When heat is provided to a gas at
rest it always expands (if it can). The weight of the gas column is huge inside the
star, the resulting expansion work is thus very large, larger than the provided heat.
Since the provided heat is not su�cient for the work, the missing energy is taken
from the internal energy réservoir, which leads to a decrease of the temperature.
More quantitatively, for an ideal gas and a homologous expansion maintaining the
hydrostatic equilibrium, the expansion work is twice the provided heat : Pdv = 2dq.
From dq = du+Pdv, we get thus also du = −dq. A very similar result can be found
without the use of the homologous approximation. dQ/dt =

∫
M εdm − L is the net

input of heat per unit time to the whole star (power provided by nuclear reactions
minus radiated power). The Virial theorem (eq. 339), tells us that dEG/dt = 2dQ/dt
and dEi/dt = −dQ/dt.

Degenerated gas

Consider now the limiting case of a completely degenerated electrons gas. We have
now δ = 0 and thus

dq = cvdT . (355)

This is the usual result for heat provided at constant volume. Why is the volume of
a degenerated gas �frozen� ? Let's try to compress a sphere in which the pressure of
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degenerated electrons dominates. The number of available �boxes� in the phase space
decreases. Since all states of small energy and momentum are already occupied, the
electrons having lost their box, must occupy new boxes of much larger momentum.
Hence, the electron pressure (the �ux of momentum) increases a lot, more than the
weight of the gas column. The resultant of the forces is thus towards the exterior
and the star come back to its initial volume. Let's try now to expand the sphere, the
number of available �boxes� in the phase space increases. Electrons from the highest
energy levels directly come to occupy these free places waiting for them. Hence, the
electron pressure decreases a lot, more than the weight of the gas column. The weight
wins and the star come back to its initial volume. We show this more rigorously
in Sect. ?? (just replace Γ1 by 5/3 in this proof). You should keep in mind that
the volume of a sphere where electron degeneracy pressure dominates
is frozen. Any input of heat is thus at constant volume, with an increase of the
temperature. This very di�erent reaction of the star depending on degeneracy leads
to the fact that the onset of nuclear reactions in the core of a star is unstable in
degenerated medium and stable in non-degenerated medium, as detailed in Sect. ??.

Structural reajdustment

How does the structure of a star react in practice when the nuclear reactions start in
its non-degenerated core ? I start with the core. Before the onset of nuclear reactions,
we know from the Virial theorem that the star globally contracts because of the
thermal imbalance, so that the internal energy and thus the temperature increase
(see Sect. 10.1.2. When the temperature reaches the required value, some nuclear
reactions start. At some point, the power provided by nuclear reactions overwhelms
the luminosity (

∫
M ε dm > L). Due to this heat input, the core contraction stops

and it starts to expand. First, the temperature temporarily continues to increase.
But the part of the star in expansion increases and the corresponding work soon
overwhelms the heat input. The missing energy is then taken from the internal
energy reservoir and the core temperature decreases, as we found with homology.
Hence, the nuclear reaction rates drop and the power provided by them goes back
below the luminosity (

∫
M ε dm < L). Due to this heat loss, the core expansion stops

and it comes back to contraction. Consequently, the core temperature increases
and thermal equilibrium is �nally established :

∫
M ε dm = L. As illustrated in the

powerpoint slides, this structural readjustment of the core takes the form of a loop
in a core density-temperature diagram.

Interpreting the evolution of the stellar envelope when the nuclear reactions start is
more complicate.

The structural readjustment of the central regions requires a signi�cant amount of
energy to produce the work and is characterized by a decrease of the mean tem-
perature gradient. As a consequence, the luminosity drops when the nuclear
reactions start. This counterintuitive result is found with all numerical simula-
tions of this evolution stage. From L = 4πR2σT 4

eff , we easily understand that this
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luminosity drop stops the e�ective temperature increase and leads to a contraction
of the envelope (R decreases). As we will see, mirror e�ects are always associated
to nuclear reactions : when the core expands, the envelope contracts ; when the core
contracts, the envelope expands.

Starting of the CNO cycle

Above 1.5 solar masses (for a solar chemical composition), the CNO cycle is the do-
minating channel for the fusion of hydrogen into helium. We have seen in Sect. 6.6.2
that there are two regimes of this cycle : in the out of equilibrium regime the rates
of the nuclear reactions are di�erent ; in the equilibrium regime they are equal and
carbon, nitrogen, . . .act as catalysors for the fusion of hydrogen into helium. More
precisely, the two fusion reactions from carbon to nitrogen (217 and 219) and to a
lower extent those from oxygen (224 and 226) have a relatively high cross-section.
On the opposite, the nitrogen-proton fusion reaction (220) has a much lower cross-
section. Note also that after hydrogen and helium, oxygen (≈ 0.7 % of the visible
mass in our galaxy) and carbon (≈ 0.3 % of the mass) are the most abundant ele-
ments of the universe. The �rst reactions providing a signi�cant amount of heat
are thus those transforming carbon and oxygen into nitrogen. As explained above,
this heat input leads to the core expansion, envelope contraction and a drop of the
luminosity. Moreover, the cross-sections of these reactions are extremely sensitive to
the temperature (ε ∝ < σv > ∝ T 15 typically). These reaction act thus only in a
small sphere in the stellar core (above it the temperatures are too low). ∇rad ∝ L/m
gets soon higher than the adiabatic gradient there, and according to the Schwarz-
schild criterion (eq. 60), the core of the star becomes convective. However, the
amount of carbon and oxygen is hundred times smaller than hydrogen and they are
soon fully transformed into nitrogen. The heat input from these reactions stops thus,
the core becomes radiative again and contracts. From the Virial theorem, the inter-
nal energy and thus the temperature restart to increase, as well as the luminosity
thanks to the important release of potential energy in the core. When the central
temperature reaches values of about 20×106 K, 14

7 N fusion (220) starts and the CNO
cycle enters in its equilibrium regime. The star readjust a second time its internal
structure, which is observationally characterised by a small 2nd luminosity drop.
Finally, thermal equilibrium is established (

∫
M εdm = L) and the main-sequence

phase starts.

11 The main-sequence phase

After the structural readjustment following the onset of nuclear reactions, a stable
thermal equilibrium is established : globally the power provided by nuclear fu-
sion reactions of hydrogen into helium is equal to the power radiated by the star
(
∫
M εdm = L) and locally the equation of energy conservation reads dL/dm = ε.
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This is the main sequence phase. Since the star is in both hydrostatic and thermal
equilibrium, there are no time derivatives in the structure equations (see Sect. 3.8).
The temporal evolution of the star has another origin : the modi�cation
of its internal chemical composition due to the nuclear reactions. A new
time-scale is associated to this evolution phase in thermal equilibrium : the nuclear
time. We obtain it by dividing the total heat provided by nuclear reactions during
the whole main sequence phase by the luminosity. We assume that approximately
one tenth of the total hydrogen mass is transformed into helium during this phase
(nuclear reactions only occur in the core), this gives :

τnuc = (Qpp/4)Nav(M/10)/L , (356)

where Qpp ' 25MeV is the heat provided per produced helium nucleus and Nav is
the Avogadro number. Inserting in this formula the solar mass and luminosity, one
gets a nuclear time scale of the order of 10 billions years, which is indeed the order of
magnitude of the life-time of the Sun on the main sequence, as predicted by rigorous
solar evolution computation. This time is much higher than the Helmholtz-Kelvin
time (for the present Sun, τHK ' 3.1× 107 years), the star has thus all the required
time to maintain thermal equilibrium during this phase.

When a star enters in this main-sequence phase, it has a given location in the HR
diagram. Relating all these points for models of di�erent masses de�nes a curve in
the HR diagram called the Zero Age Main Sequence. The evolution track of the
star has an angular point with a local minimum of luminosity at the ZAMS. This
helps to locate it by eyes.

11.1 Mass-Luminosity relation, ages and stellar populations

Based on homologous transformations, we established in Sect. 8.2 a mass-luminosity
relation (eq. 326) telling us that the luminosity of stars steeply increases with their
mass. Indeed, a mass-luminosity relation shows up from rigorous stellar models, as
long as they are mainly radiative. However, it does not have the form of a power
law L ∝ Mα with a constant α because stars are not homologous. Moreover, the
luminosity does not only depend on the mass, it also depends on the chemical com-
position of the star. Since d lnL/d lnM ≈ 3 − 4 > 1, we see from the nuclear time
de�nition (eq. 356) that the duration of the main-sequence phase steeply decreases
with the mass. These tendencies are quanti�ed (order of magnitudes) in Table 11.1.

The steep decrease of the main-sequence duration with the mass has numerous
consequences in astrophysics. In our galaxy, the less massive stars have a life-time
much larger than the universe's age. Therefore, some of its present stars formed very
early in the history of our galaxy. The �rst-ever generation of stars of our galaxy,
composed of hydrogen and helium only constitute the so-called population III.
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M/M� 0.5 1 2 10 80

L/L� 0.04 0.7 15 6000 106

α 3 4.3 4 3 2

MS duration (years) 50×109 10×109 109 20×106 3×106

R/R� 0.45 0.9 1.6 4 12

Mcc/M 0 0 0.2 0.4 0.8

ρ̄ (g/cm3) 8 2.1 0.65 0.25 0.055

ρc (g/cm
3) 75 80 60 8 1.8

Tc (106 K) 9 14 21 32 41

Tab. 1 � Characteristics of stars with di�erent masses on the ZAMS : masses,
luminosities, α = d lnL/d lnM , duration of the main-sequence phase, radii, mass
fractions of the convective core, mean densities (ρ̄), central densities (ρc) and central
temperatures.

We haven't observed a representative of this population yet. We think that most of
them were very massive and thus have already exploded as a supernova. Next, come
the population II stars populating the halo and bulge of our galaxy. These stars
were formed before the galactic disk 11-13 billions years ago. They have low masses,
which allowed them to survive until now. They also have low metallicities. To be
more precise, the metallicity is de�ned in astrophysics by :

[Fe/H] ≡ log10

(
nFe

nH

)
star

− log10

(
nFe

nH

)
sun

, (357)

where ni is the number density of the element i. The metallicities of population II
stars are in the interval −5 ≤ [Fe/H] ≤ −1, in other words they are between 10
and 100 000 times less �metallic� than the Sun. The galactic disk (90 % of the stars
of our galaxy) is composed of population I stars with metallicities of the same
order of magnitude of our Sun. All masses up to ≈ 100M� are found in pop II stars.
Hence, all possible ages are also found, up to around 9 billions years for the less
massive.

As shown in Table 11.1, the most massive stars (O-B spectral types) have life-times of
only several millions years ; they are thus much less numerous in our galaxy. However,
from an observational point of view, instruments (e.g. photometers) are designed for
a given range of apparent magnitude. Since massive stars are much more luminous,
we can see them very far away and they constitute a signi�cant part of the bright
stars of the �rmament (e.g. : Spica). Because of their very high luminosity, they
signi�cantly contribute to the total luminosity of spiral galaxies. Stars form in spiral
arms, which can be seen as density waves (kinds of tra�c jam zones). The life-time
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of massive stars are much shorter than the orbital periods around the galactic center
(≈ 220×106 years for the Sun) ; they have thus not quitted the spiral arms yet when
they explode as supernovae. This explains the bluish appearance of spiral arms in
images of spiral galaxies, it comes from the very bright O-B stars only present there.

Let's come back to the mass-luminosity relation and its physical interpretation. We
can approximately �nd the behavior of α = d lnL/d lnM as a function of the mass
(Tab. 11.1) through homologous reasoning. Around the mass of the Sun, increasing
the mass increases the temperature, thus decreases the opacity (see the Kramers laws
eqs. 153 and 154) and thus increases even more the luminosity (eq. 324). Hence, α > 3
in this mass domain. For more massive stars, the temperature is larger and electron
scattering dominates as opacity source. Since it doesn't depend on T but only on
X (κes ' 0.02(1 +X)m2/kg), we �nd from eq. 327 : α ' 3. For even more massive
stars, the radiation pressure becomes signi�cant compared to the gas pressure. Let's
consider the extreme case where the radiation pressure dominates. Eq. 323 obtained
from the ideal gas equation of state is thus not valid. We have P ' (1/3)aT 4, and
thus using eq. 322 :

T 4 = TT (x)4 M2/R4 and T 3dT/dr = TT (x)3dTT/dxM2/R5.

Since r2/ρ = x2/ρρ(x)R5/M , we get from eq. 324,

L(r) = LL(x)M, (358)

thus α ' 1 for hypothetical hyper-massive stars where the radiation pressure domi-
nates everywhere. Radiation pressure explains thus why α decreases when we enter
in the domain of very massive stars.

It is important to notice that the mass-luminosity relation was obtained assuming
a purely radiative transport of energy. Hence, it doesn't apply to stars having a
large convective envelope. The Hayashi track associated to fully convective models
with same mass but very di�erent luminosities clearly illustrates this. Note also that
nuclear reactions don't play any role in the establishment of the mass-luminosity rela-
tion, they don't impact it. Stars radiate as they do because they have internal
temperature gradients and opacities enabling it, whatever the origin of
energy (nuclear reactions or potential energy release). The radiated energy is taken
from where it is available. If there are nuclear reactions, they provide this energy and
the star evolves over the nuclear time-scale. Imagine now that this source of energy
is suddenly cutted o�. The gradient of temperature would not be instantaneously
modi�ed and the star would continue to radiate. It would enter in a global contrac-
tion phase, half of the released potential energy being radiated and the other half
converted into internal energy, it would evolve over the Helmholtz-Kelvin time-scale.

Let's try now to physically interpret the mass-luminosity relation. Consider �rst an
increase of the stellar mass at constant radius. The relations 322 and 323 tell us that
this implies an increase of the weight of the gas column and thus the temperature. We
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directly see from eq. 324 that this temperature increase leads to a signi�cant increase
of the luminosity (massive stars are hotter and thus more luminous). Consider now
an increase of the radius at constant mass. The radius increase leads to a signi�cant
decrease of the density (eq. 321) and a decrease of the temperature (eq. 323). Both
e�ects compensate in eq. 324, so that the luminosity doesn't change. Finally, it
should be noted that the luminosity doesn't depend on the mass only. It also depends
on the internal chemical composition. First, increasing the mean molecular weight
(as nuclear fusion reactions do) increases the temperature (eq. 323) and thus the
luminosity (eq. 326). Second, increasing the metallicity increases the opacity and
thus decreases the luminosity. We come back to this later.

11.2 Internal physical characteristics of stars along the ZAMS

We have examined in detail the mass-luminosity relation in the previous section. We
show in Table 11.1 how other quantities vary with the mass along the ZAMS. The
radius of main-sequence stars reasonably increases with the mass. At low masses,
stars have a convective envelope and a radiative core. For example, at 0.5 M�,
the convective envelope encompasses 20% of the mass. For the Sun, this convective
envelope corresponds to 2% of the mass. The location of its bottom is precisely and
accurately known by helioseismology, it is at a radius of 0.713 solar radii. Above
1.2 solar masses, main-sequence stars have a convective core. The mass fraction of
this convective core is given in Table 11.1. As discussed at the end of section 6.6.2,
this convective core originates from the highly temperature sensitive CNO cycle,
dominating the pp chain from intermediate to high mass stars. We can also see that
the mean density decreases as the mass increases. After a plateau at small masses,
the same tendency is found for the core density. Finally, the core temperature slowly
increases with the mass.

We now interpret these results by an approximate reasoning based on homologous
transformations. At this stage, we have to consider the impact of nuclear reactions.
Main-sequence stars are at thermal equilibrium, the power produced by nuclear
reactions is equal to their luminosity :

L =
∫ M

0
ε dm . (359)

We approximate the dependence of ε with respect to the temperature by a power
law :

ε ∝ ρT ν .

Using the homologous relations 321 and 323, we �nd :

ε = εε(x)
µνM ν+1

Rν+3
.
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Combining this result with eq. 359, we �nd :

L(r) = LL2(x)
µνM ν+2

Rν+3
. (360)

This relation corresponds to the power produced by nuclear reactions. At thermal
equilibrium, it must be equal to the radiated power. With a constant opacity in 326,
it is given by :

L(r) = LL(x)µ4M3 , (361)

Equalizing 360 and 361, noting that the LL(x) and LL2(x) functions must be mul-
tiple and isolating the radius, we �nd :

R ∝ M
ν−1
ν+3 µ

ν−4
ν+3 . (362)

We can now substitute the relation 362 in equations 321 and 323, which gives :

ρ(r) = ρρ(x)M1−3 ν−1
ν+3µ−3 ν−4

ν+3 , (363)

T (r) = TT (x)M1− ν−1
ν+3µ1− ν−4

ν+3 . (364)

Since ν >> 1 (≈ 13 − 15 for the CNO cycle), we �nd in agreement with rigorous
models that the radius of main sequence stars increases with their mass, their density
decreases with their mass and their core temperature slightly increases with their
mass. This last result is important and warrants a physical interpretation. Suppose
that the temperature would increase signi�cantly with the mass, the production of
energy by nuclear reactions would considerably increase (very high ν), more than
the energy evacuation by radiation, we would clearly go out of thermal equilibrium.
This net heat input would lead to an expansion of the gas and, as a consequence, a
decrease of the temperature. This is the important control of the temperature by
nuclear reactions in stellar interiors. Note that the decrease of the core density
as the mass increases (see Table 11.1) also contributes to the maintaining of the
thermal equilibrium by facilitating the evacuation of energy by radiation (ρ is on
the denominator in eq. 324) and decreasing the power produced by nuclear reaction
(proportional to ρ2).

These results also enable to understand the location of the main-sequence in the HR
diagram. The logarithm of L = 4πR2σT 4

eff reads : logL = 2 logR + 4 log Teff + c1.
For a �xed µ, the logarithms of equations 361 and 362 read logL = 3 logM + c2 and
logR = (ν − 1)/(ν + 3) logM + c3. This de�nes a system of 3 linear equations with
4 unknowns : logL, log Teff , logM and logR. Solving it allows us to express logL
as a linear function of log Teff :

logL =
12

3− 2 ν−1
ν+3

log Teff + c4 . (365)

This approximate development explains why the main-sequence is more or less a
straight line in the HR diagram.
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11.3 Evolution of the internal structure

The evolution of the internal structure of a star during the main-sequence is dic-
tated by the progressive modi�cation of its chemical composition, mainly due to
nuclear reactions. Helium is progressively synthesized from hydrogen, which leads
to an increase of the mean molecular weight in the core. This increase of µ modi�es
the relation between the density, the temperature and the pressure in the equation
of state. Therefore, the thermodynamic quantities must change, which leads to a
modi�cation of the whole stellar structure.

Interpreting the modi�cation of this structure is not easy because a homologous
reasoning is not valid here. Indeed, the mean molecular weight change due to nu-
clear reactions only occurs near the centre (if the core is radiative) or in the whole
convective core if there is one.

If on the contrary, µ was multiplied by a same factor everywhere in the star, a
homologous reasoning would be more justi�ed. Considering this simpler case can
help us to understand what happens in reality. In this case, the dependence with
respect to µ of the di�erent physical quantities would be given by equations 361,
362, 363 and 364. Eqs. 362 and 364 tell us that the radius and temperature should
increase with µ. However, since ν is very high, eq. 364 tells us that the temperature
increase is strongly inhibited by nuclear reactions. This is another example of the
temperature control by nuclear reactions : as T is proportional to µ/R, R
must increase to compensate for the µ increase and avoid a signi�cant increase of
the temperature.

But this is for homology, what happens in reality ? What remains is the temperature
control by nuclear reactions. However, µ only increases in the center. This leads us
to consider what happens locally in the core. Consider the equation of state of an
ideal gas and isolate µ :

µ =
kρT

Pmu

. (366)

Since the temperature is controled by nuclear reactions, it cannot increase signi�-
cantly. From this equation, it seems natural that the density should locally increase
where µ increases. But this cannot be the case in the envelope where µ remains
constant. Indeed, if the whole star would contract, eq. 323 tells us that the tempe-
rature would signi�cantly increase, which is not permitted by nuclear reactions. So,
the only possible channel for the star is a contraction of the core and a simultaneous
signi�cant expansion of the envelope. To understand this, I split the weight of the
gas column (and thus the pressure) at the stellar centre into two terms corresponding
to the core and the envelope :

Pc =
∫ M

0

Gm

4πr4
dm =

∫ m1

0

Gm

4πr4
dm+

∫ M

m1

Gm

4πr4
dm .refM − L3 (367)
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As we have seen, the core must contract (r decreases) because of the local µ increase.
This leads to a signi�cant increase of the �rst term (r4 on the denominator). The
envelope cannot do the same, because this would lead to a very large increase of the
core pressure and thus a signi�cant increase of the temperature (T and P are closely
related through the equation of state). On the contrary, if it expands, the second
term decreases and compensates for the increase of the �rst one. This inhibits the
increases of the core pressures and temperatures. As conclusion, the consequence of
the µ increase in the core and the control of the temperature by nuclear reactions is
a contraction of the core and an expansion of the envelope.

11.4 Global characteristics' evolution and HR track

We have seen in the previous section that the envelope must expand during the main-
sequence. This is valid for all masses. However, the radius increase is much larger in
massive stars than in low mass stars. E.g. ... Although the evolution of the internal
structure is not homologous at all, some tendencies found with homology remain
valid. The µ increase leads to a slight increase of the core temperature. Moreover,
the radius increase due to the temperature control by nuclear reactions leads to
a signi�cant decrease of the envelope density. As a consequence, the luminosity
(proportional to T 3/ρ, see eq. 324) increases as the star evolves. We will see later that
this luminosity increase is strongly inhibited by mass loss in very massive stars. The
evolution of the e�ective temperature comes from L = 4πR2σT 4

eff . In intermediate
to high mass stars, R2 increases more quickly than L and the e�ective temperature
decreases as the star evolves. In low mass stars, Teff increases. In our Sun, Teff slightly
increased �rst, has reached a maximum now, and will decrease in the future.
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