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Abstract: The effects of rapid rotation on stellar pulsation is examined using an accurate 2D numer-

ical method. We compare the results of these non-perturbative calculations with those of perturbative

methods and find that frequency differences exceed 0.08µHz on half of the modes when the rota-

tion rate is 15% of the keplerian (break-up) limit. The differences between the two results is mainly

attributed to the approximate treatment of the centrifugal force in perturbative methods. We also

explore different levels of approximation for the Coriolis force.

1 Introduction

The pulsation of rotating stars is of astrophysical interest because of the many unresolved
questions on the structure of rotating stars, and the potential information that can be deduced
through asteroseismology. With the launch of space missions such as Corot, we can expect to
obtain accurate measurements of pulsation frequencies some of which will be of rapidly rotating
stars. It is therefore important to understand and accurately quantify the effects of rotation
on stellar pulsations.

There are two main effects that lead to a modification of stellar oscillations. The first is the
centrifugal force which affects pulsation modes in a direct way through the effective gravity and
in an indirect way through the deformation of the star. The second is the Coriolis force, which
only has an effect through the momentum equation. In both cases, couplings appear between
the different spherical harmonics, which adds to the mathematical difficulty of the problem.

2 Formalism

We calculate adiabatic acoustic oscillations of a uniformly rotating polytropic model of a star,
in which the polytropic index N is 3. This can be decomposed into two steps: first we calculate
the equilibrium model, second we solve the linearised oscillation equations. The numerical
method we employ for both steps consists of a direct 2D numerical approach. It is entirely
spectral as it uses spherical harmonics in the horizontal direction and Chebyshev polynomials
in the radial direction. We use the surface-fitting coordinates of Bonazzola et al. (1998).
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In order to project the oscillation equations onto the spherical harmonic base we start by
expressing the different unknowns as a sum of spherical harmonics multiplied by radial functions
that need to be determined. These expressions are introduced into the oscillation equations,
which are then projected onto the vectorial spherical harmonics (e.g. Rieutord 1987). In
this way, we obtain a highly coupled system of ordinary differential equations in terms of the
radial coordinate ζ, the solution of which gives the unknown radial functions. This system
is discretised onto a Gauss-Lobatto grid associated with the Chebyshev polynomials and the
resulting algebraic eigenvalue problem is solved numerically.

We have done different tests to verify the accuracy of the calculated frequencies. In the
non-rotating case we obtain an agreement of ∆ω/ω ∼ 10−7 with the frequencies of Christensen-
Dalsgaard and Mullan (1994). Also, for particular modes calculated without the Coriolis force,
we obtain an agreement of ∆ω/ω ∼ 10−6 with Lignières et al. (2005) for rotation rates up to
0.59 Ωeq

K , where Ωeq
K = (GM/R3

eq)
1/2 (Req being the equatorial radius). If we deduce perturbative

coefficients from our frequencies, we obtain an agreement of 2 percent and usually better with
the coefficients of Saio (1981). Finally, we also compute a variational test and obtain an
accuracy of 10−7 or better.

3 Results and physical aspects

When examining the pulsation frequencies, it is interesting to compare them to those obtained
through perturbative methods, in order to find out up to what point perturbative methods
are valid. In what follows, we will consider modes with a harmonic degree ` ranging from 0
to 3, an azimuthal order m going from −` to `, and the radial order n ranging from 1 to 6
(strictly speaking an oscillation mode is composed of a whole set of harmonic degrees; here `
refers to the harmonic degree of the non-rotating mode). We follow their frequencies from the
non-rotating case to a rotation rate of 0.38 Ωeq

K .
Fig. 1 shows a comparison between complete numerical frequencies and 2nd order perturba-

tive ones (we calculate the perturbative coefficients using a least squares fit near Ω = 0). As can
be seen from the figure, perturbative calculations lead to errors exceeding 1% when the rotation
rate is higher than 0.28 Ωeq

K . If we consider a star with a mass of 1.9M� and a polar radius of
2.3R�, a typical δ Scuti star, and we if impose an error bar of 0.6 µHz (the accuracy of Corot’s
secondary program), we find that the mode (n = 6, ` = 2, m = 0) is erroneous at a rotation rate
of 0.12 Ωeq

K (which corresponds to an equatorial velocity veq = 47 km.s−1) and half the modes
are incorrect beyond 0.24 Ωeq

K (veq = 95 km.s−1). If instead we impose an error bar of 0.08 µHz
(the accuracy of Corot’s primary program), the (n = 6, ` = 2, m = 0) mode is erroneous at
0.075 Ωeq

K (veq = 30 km.s−1) and half the modes are incorrect at 0.15 Ωeq
K (veq = 60 km.s−1).

It is then interesting to try to ascertain where these errors come from. Fig. 2 and 3 give some
clues as what may cause these differences. In fig. 2, we show the relative error (ωpert.−ω)/ω from
perturbative methods as a function the rotation rate. As the radial order n increases, so does
the relative error. In fact this trend is quite general, as it applies for all values of ` and m. In
fig. 3, we show another comparison between perturbative calculations and complete ones. This
time, however, the Coriolis force has been suppressed in both sets of calculations. Once more,
the relative error increases with the radial order, which shows that the centrifugal force alone
reproduces the same behaviour as in fig. 2. By contrast, we know that the effects of the Coriolis
force decrease as the frequency increases. Therefore the error resulting from the perturbative
treatment of the Coriolis force is not expected to increase with the radial order. This suggests
that the centrifugal force plays the dominant role in the differences between perturbative and
complete calculations. Fig. 1 confirms this conclusion: the dashed lines represent calculations



Figure 1: Non-dimensional frequencies as a
function of the rotation rate. Solid lines:

non-perturbative frequencies; dotted lines:

2nd order perturbative frequencies; dashed

lines: non-perturbative frequencies without
the Coriolis force.

Figure 2: Behaviour of the relative error
from 2nd order perturbative methods as a
function of the radial order n. The er-
ror increases with n. In all the figures,
Ωeq

K = (GM/R3

eq)
1/2, Ωpol

K = (GM/R3

pol)
1/2

and ε = 1 − Rpol/Req, where Req and Rpol

are the equatorial and polar radii, resp.

in which the Coriolis force is neglected but the centrifugal force is treated in a non-perturbative
way. They give a better approximation than the perturbative calculations.

One of the reasons that may explain the centrifugal force’s dominant role in the differences
between the two approaches is the approximate treatment by perturbative methods of the
star’s deformation. Perturbative methods typically only use the ` = 0 and ` = 2 harmonics to
describe this deformation, which is inaccurate, especially in the star’s outer layers. Furthermore,
differences between two descriptions of the deformation will give rise to differences in the
frequencies which are roughly proportional to the frequencies. Hence a frequency twice as large
as another will vary twice as much as the other due to modifications of the star’s deformation.
It is then helpful to bear in mind that as the radial order increases, pulsation frequencies also
increase, and the associated modes become more concentrated in the star’s outer layers. As a
result, the centrifugal force rapidly becomes the dominant factor in the differences between the
two approaches.

We can then take a more detailed look at the effects of the Coriolis force. In what follows,
we will continue to treat the centrifugal force in a non-perturbative way and will look at three
different ways of treating the Coriolis force. The first way consists in neglecting the Coriolis
force. The second way corresponds to a first order perturbative approximation. The third way
is a complete treatment. We denote these three levels of approximation by ω0

n`m, ω1

n`m and ω2

n`m

respectively:

ω2

n`m = ω0

n`m + Dn`mΩ
︸ ︷︷ ︸

ω1

n`m

+O(Ω2) where Dn`m =
i
∫

V
ρo~ez · (~un`m × ~u∗

n`m) dV
∫

V
ρo‖~un`m‖

2dV
(1)

The expression for Dn`m is very similar to the spherical expression (in both cases, the linear fluid
dynamics operator is self-adjoint), but the integration domain is spheroidal, the equilibrium
density is that of a rotating star and the eigenfunction ~un`m takes the centrifugal force into



Figure 3: The relative error between com-
plete numerical calculations and 2nd order
perturbative calculations, both of which ex-
clude the Coriolis force. As n increases, the
error has the same behaviour as the calcu-
lations which include the Coriolis force (see
fig. 2).

Figure 4: The absolute error caused by ei-
ther neglecting the Coriolis force (No Cor.)
or doing a 1st order approximation of its ef-
fects (Pert.). The 1st order approximation
is not substantially better, but does make
the errors symmetric in m, the same parity
as 2nd order corrections.

account, but not the Coriolis force. However, in the spherical limit, we obtain the familiar
expression Dn`m = mCn` which can be found in Ledoux (1951).

Fig. 4 shows the absolute errors of ω0

n`m and ω1

n`m for an ` = 1 triplet. In the m = 0 case,
ω0

n`m = ω1

n`m since the corrections in that case start at second order in Ω. For m = ±1, it is
interesting to note that the first order correction ω1

n`m brings the absolute error of both m = 1
and m = −1 to roughly the same level (this implies increasing the error on m = −1). This
shows that corrections symmetric in m, which come from even orders, are necessary. A second
order correction might then adequately account for the Coriolis force.

4 Conclusion

In this paper, we have been able to examine some of the differences between a perturbative and
a complete treatment of the effects of rotation on stellar pulsations, and explore the relative
effects of the centrifugal and Coriolis forces. Our results show that the errors of perturbative
methods can mostly be attributed to the approximate treatment of the centrifugal force.
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