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Abstract: Time-Dependent Convection (TDC) models obtained by combining the local treatment

of Gabriel (1996) and Grigahcène et al. (2005) and the non-local prescriptions of Spiegel (1963)

are presented. We show that in the stationary unperturbed case, these non-local treatments can be

constrained by the results of 3D hydrodynamic simulations (Stein & Nordlund 1998). We consider

here the case of solar-type stars with a large convective envelope and A-F type stars with two very

thin surface convection zones.

1 Local treatments

The first treatments proposed for the modeling of convection in stellar interiors were local.
In these models, the convective flux, Reynolds stress, . . . are directly related to mean local
thermodynamic quantities such as the temperature, the entropy, the density and their gradients.
This approximation is justified when the space scale associated to most energetic turbulent
motions is small compared to the scale height of the mean quantities (e.g. Hp = |d ln P/dr|−1).
Unfortunately, it is seldom the case in stellar interiors. In the local approach, the correlation
terms associated to turbulence are obtained at each given radius by solving the equations
for the convective fluctuations, assuming constant coefficients. However, there appear more
unknowns than equations in such approach and some assumptions must be done for the closing
of the system. In the simplest case called the Mixing-Length Theory (MLT, Böhm-Vitense
1958), this closure is obtained by reducing the turbulent spectrum to its simplest expression: a
scalar l related to some characteristic scale of the stratification; most frequently it is assumed
l = α|d lnP/dr|−1, with the free Mixing-Length (ML) parameter α. More sophisticated local
theories have been proposed taking the full spectrum of turbulence into account (Canuto &
Mazzitelli 1991). These local treatments are easily implemented in a stellar evolution code
and the free parameters (e.g. α) can be calibrated from the Solar age, radius and effective
temperature. For this reason, they have been and are still widely used.

If we consider now the interaction between convection and pulsations, the things are much
more complex. In the framework of the MLT, different approaches leading to the same equations
in the stationary case differ significantly for the time-dependent perturbed case: on one hand
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we find the TDC theory of Gough (1977) and on the other hand the TDC theory of Gabriel
(1996). The unphysical short-wavelength spatial oscillations of the eigenfunctions found with
these treatments in cool stars (Teff . 6500 K) was considered for a long time as the main
criticism of the local approach, and it was pointed out that non-local treatments could solve
this problem (Gonczi 1986). However, Grigahcène et al. (2005) proposed recently a new
perturbation of the closure equations that allows to solve this problem in a local way (see also
Dupret et al., these proceedings).

We note that some good results can already be obtained with local treatments such as
the stabilization of the modes at the red side of the δ Sct instability strip, the explanation of
the driving of the γ Dor g-modes (Dupret et al. 2005a) and better multi-color photometric
amplitude ratios and phase differences (Dupret et al. 2005b, 2005c).

2 Non-local treatments

In most of the cases, the space scale of most energetic turbulent motions is larger than the
scale height of the mean stratification in stellar interiors, so that the local treatments are not
justified. The only way to model rigorously the non-local character of convection is through
3D hydrodynamic simulations. However, such computations cost a lot of time and they cannot
be used to determine the coherent interaction between convection and pulsations. For these
reasons, it is useful to derive non-local treatments based on simpler approaches such as the MLT.
The original idea of such treatment comes from Spiegel (1963) and is based on an analogy with
the radiative transfer in stellar atmospheres. The well known transfer equation is:

µdIν/dτν = Sν − Iν , (1)

where dr/dτν = (κνρ)−1 is the mean free-path of the photons, and Sν is the source given by the
Planck function in the Local Thermodynamic Equilibrium (LTE) approximation. Similarly, in
a very simplified way, we write as follows the motion and energy equations for a convective
element:

dV/dt = −g ∆ρ/ρ − V 2/l , (2)

d∆s/dt = −V ds/dr − ωR∆s − V ∆s/l , (3)

where l is the mean free-path of the convective element and ωR corresponds to the radiative
losses. In the local MLT approach, we assume that |dV/dr| � |V |/l (idem for ∆s). In the
stationary case and defining ωc = V/l (ω−1

c is the life-time of the convective elements), we find
the simple eigenvalue problem:

ωcV = −g ∆ρ/ρ , (4)

ωc∆s = −V ds/dr − ωR∆s . (5)

The characteristic polynomial of this problem has a positive and a negative eigenvalue inside
a convective zone. The positive eigenvalue and the corresponding eigenvector give the classical
local MLT solution.

We come back now to the “real” non-local problem. If we assume that (V, ∆s) is in the
eigenspace of the local MLT solution, then we can write in the stationary case:

dV/dζ = lωc − V , (6)

d∆s/dζ = lωc∆s/V − ∆s , (7)



where dζ = dr/l and lωc is the velocity corresponding to the local solution: Vloc. The form
of this system is similar to the transfer equation (1) with a source function given by the local
MLT solution, and ζ which can be compared to the optical depth. We consider now only
the first of these two equations. Integrating it for convective elements going up, we have:
V +

non−loc(ζ0) =
∫ ζ0

−∞
Vloc exp(ζ − ζ0)dζ. Combining elements going up and down and taking the

mean gives:

Vnon−loc(ζ0) =

∫ +∞

−∞

Vloce
−|ζ−ζ0|dζ. (8)

We assume now that such kind of relation can be used to relate any non-local (nl) and local
(l) quantity associated to turbulence. This is of course an approximation and it is appropriate
to introduce free non-local parameters a and b at this level. Following Balmforth et al. (1992),
we get for the turbulent pressure and convective flux:

Pt,nl(ζ0) =

∫ +∞

−∞

Pt,le
−b|ζ−ζ0|dζ , Fc,nl(ζ0) =

∫ +∞

−∞

Fc,le
−a|ζ−ζ0|dζ . (9)

Taking the second order derivative gives the two very simple differential equations:

d2Pt,nl/dζ2 = b2(Pt,nl − Pt,l) , d2Fc,nl/dζ2 = a2(Fc,nl − Fc,l) . (10)

The system of equations for the equilibrium stellar models is then entirely defined. In the
energy and hydrostatic equilibrium equations appear the non-local convective flux and turbulent
pressure respectively. We add the two differential equations (10) relating them to the local
ones. Finally, the adopted local convection treatment enables us to relate the local turbulent
quantities to the usual variables (T , ρ, . . . ) and their gradients. If the MLT is used at this
level, we call this treatment the non-local MLT.

The same approach can be followed for the modeling of non-adiabatic pulsations. We add
to the equations of the linear theory the perturbations of equations (10). And a local TDC
treatment (see previous section) enables us to relate the perturbed local convective flux and
turbulent pressures to the usual perturbed mean quantities. This system of equation can be
implemented and solved by a non-adiabatic pulsation code, allowing in particular a better
determination of the damping rates of the modes in solar-type stars.

3 Constraints from 3D hydrodynamic models

3D hydrodynamic models can be used to test and constrain simpler convection models such as
the non-local MLT treatment presented in the previous section. We consider here the case of
the Sun and use the results of a 3D simulation by Stein & Nordlund (1998).From the 3D results,
the turbulent pressure and convective flux can be determined by taking the appropriate means
(Pt = ρV 2

r , Fc = ρVrδh). In Fig. 1, we compare the 3D results with those obtained with local
MLT treatment. The solid lines are the 3D values of Pt (left) and Fc/F (right) and the dashed
lines the local MLT results. Of particular interest is the behaviour of the turbulent pressure
in the overshooting region (5 ≥ log P ≥ 3), which corresponds essentially to an exponential
decrease in the 3D results. The non-local treatment proposed in the previous section (Eq. 9)
predicts very similar Pt,nl in the overshooting region with a non-local parameter b ' 3. This
indicates that it could be possible to mimic the 3D results with simpler models. The convective
flux predicted by 3D and local MLT models are less different (right panel). The values of the
non-local parameter a required to fit the 3D results are larger than b, we find a ' 11. Following
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Figure 1: Turbulent pressure (left) and convective flux relative to total flux (right) as obtained
with 3D hydrodynamic models (Stein & Nordlund 1998) and MLT.

the approach of previous section, local and non-local variables are put in relation throughout
Eq. (10). If we take the non-local turbulent pressure Pt,nl,3d from the 3D simulations, we can
deduce the corresponding local one by: Pt,l,3d = Pt,nl,3d − (1/9) d2(Pt,nl,3d)/dζ2; this gives the
dotted line of Fig. 1. Comparing it with the dashed line (local MLT) shows a similar shape.
In the illustrated case, the ML parameter α = 1.75 (solar calibrated value). Our most recent
investigations show that by choosing appropriately α (letting it vary with depth) and the non-
local parameters a et b, it is possible to reproduce very closely the results of the 3D simulations
with non-local MLT. Further works are to perform non-adiabatic computations with non-local
time-dependent convection MLT treatment, using structure models mimicking the results of 3D
simulations. This will allow us to better determine the theoretical damping rates for solar-type
oscillations.
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