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Carbon Cycle: Processes and Time Scales
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(Adapted from Holmén, 1992)

→ Natural Processes with long time scales
→ Natural Processes with short time scales
→ Human Perturbations
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Modelling
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Model Development: General Principles

Four stages
1 Problem Identification
2 Model Formulation
3 Model Solution
4 Interpretation of the results

Equal importance for each stage

Not a uni-directional procedure

(following Boudreau, 1997)
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Development of a Model

Formulation

processes to include / exclude
mathematical representation of the processes
approximations adopted
hypotheses made

Solution

depends on the situation

Interpretation

secondary results: consequences
model to be refined or to simplified

(following Boudreau, 1997)
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Illustration: Application to an Actual Question

Question

How much CO2 is released by volcanic and hy-
drothermal activity (metamorphic fluxes included)?

How does this compare to the amount of CO2 re-
leased by human activity?
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Model Formulation: Hypotheses and Simplifications

Time Scale: 1,000 – 10,000 years and more

little variability of volcanic and hydrothermal fluxes
biosphere at steady state : fluxes have no influence
burial of organic matter counter-balanced by kerogen carbon
weathering: fluxes cancel out
sea-floor weathering poorly known and small: neglected

Steady state
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Carbon Cycle Model: Processes Considered
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Carbonate Chemistry in Seawater

Carbonate system equilibria

CO2(aq)+2 H2O ⇌ HCO−3 +H3O
+

HCO−3 +H2O ⇌ CO2−
3 +H3O

+

Special roles played by particular species

atmospheric pCO2 ←→ [CO2(aq)]surface

CaCO3 burial←→ [CO2−
3 ]deep−sea

Speciation calculated from combinations

Dissolved Inorganic Carbon

CT = [CO2(aq)]+ [HCO−3 ]+ [CO2−
3 ]

Total Alkalinity

AT ≃ [HCO−3 ]+2[CO2−
3 ]+ [B(OH)−4 ]+ [OH−]− [H3O

+]
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Carbon Cycle Model: Fluxes Considered
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Carbon Cycle Model: Conservation Equations

Catm : total amount of C in the atmosphere

Coce : total amount of C in the ocean

Catm+Coce = C

A : total amount of alkalinity in the ocean

dCatm

dt
= Cvol−Csil−a−Ccar−a+Co→a−Ca→o

dCoce

dt
= Chyd+Csil−a+Ccar−a+Ccar−r−Co→a+Ca→o−Csed

dCatm

dt
+

dCoce

dt
=

dC

dt
= Chyd+Cvol+Ccar−r−Csed

dA

dt
= Asil+Acar−Ased
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Typical Weathering Reactions for Silicate Minerals

Dissolution of albite with precipitation of kaolinite

2NaAlSi3O8+2CO2+11H2O−→
Al2Si2O5(OH)4+2Na++2HCO−3 +4H4SiO4

Dissolution of anorthite with precipitation of kaolinite

CaAl2Si2O8+2CO2+3H2O−→
Al2Si2O5(OH)4+Ca2++2HCO−3

Dissolution of microcline with precipitation of pyrophillite

2KAlSi3O8+2CO2+6H2O−→
Al2Si4O10(OH)2+2K++2HCO−3 +2H4SiO4
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Typical Weathering Reactions for Silicate Minerals

Dissolution of chlorite with precipitation of kaolinite

Mg5Al2Si3O10+10CO2+5H2O−→
Al2Si2O5(OH)4+5Mg2++10HCO−3 +H4SiO4

Dissolution of microcline with precipitation of gibbsite

KAlSi3O8+CO2+4H2O−→
Al(OH)3+K++HCO−3 +H4SiO4
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Sources and Sinks of DIC and TA in the Ocean

Sources : continental weathering

carbonate rocks: congruent dissolution

CaCO3+CO2+H2O−→ Ca2++2HCO−3

silicate rocks: incongruent dissolution

silicate mineral+bCO2+water−→
secondary minerals+cations+bHCO−3 + sH4SiO4

Sinks : burial of biogenic carbonates

Ca2++2HCO−3 −→ CaCO3+CO2+H2O
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Cycles to the Carbon Cycle: Ca, K, Mg, Na, Si

Residence times of coupled cycles’ elements in the oceans

Element τoc Note
(106 yr)

Ca 1
Mg 13
K 12
Na 83
Si 0.02
DIC 0.07 org. and inorg. sinks

0.10 inorg. sinks only
Alk 0.05

Guy Munhoven Continent-Ocean Interaction: Role of Weathering



Carbon Cycle – Silicate Cycle Coupling
Geochemical carbonate and silicate cycles

Simplification: neglect K and Na contributions

No significant K- or Na-carbonate depositions

Only 5% of the total riverine HCO−3 flux
provided by Na- and K-silicate dissolution
(Berner, 2004, based upon Berner and Berner, 1996)

According to Gaillardet et al. (1999), this fraction is 19%, to
be compared with 21% from Ca- and Mg-silicates

This oceanic HCO−3 source is counterbalanced by the HCO−3
sink represented by authigenic Na- and K-mineral precipitation
in marine sediments (reverse weathering, very slow process):

2K++3Al2Si2O5(OH)4+2HCO−3
−→ 2KAl3Si3O10(OH)2+5H2O+CO2
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Carbon Cycle – Silicate Cycle Coupling
Geochemical carbonate and silicate cycles

Weathering of Ca- (or Mg-) carbonate

CaCO3+CO2+H2O−→ Ca2++2HCO−3

Precipitation and sediment burial of carbonates

Ca2++2HCO−3 −→ CaCO3+CO2+H2O

Net balance:
—
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Carbon Cycle – Silicate Cycle Coupling
Geochemical carbonate and silicate cycles

Weathering of Ca- (or Mg-) silicate

CaSiO3+2CO2+3H2O−→ Ca2++H4SiO4+2HCO−3

Precipitation and sediment burial of carbonate and opal

Ca2++2HCO−3 −→ CaCO3+CO2+H2O

H4SiO4 −→ SiO2+2H2O

Net balance

CaSiO3+CO2 −→ CaCO3+SiO2

Combined with reverse reaction (metamorphism)

CaSiO3+CO2 ⇆ CaCO3+SiO2 Urey’s Reaction
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Global Balance of the Ocean-Atmosphere System

Relationships between carbon and alkalinity fluxes

Ccar−r = Ccar−a

Asil = Csil−a

Acar = Ccar−a+Ccar−r = 2Ccar−r

Ased = 2Csed

Upon introduction into the C et A balance equations:

dC

dt
= Chyd+Cvol+Ccar−r−Csed

dA

dt
= Asil+Acar−Ased
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Carbon Cycle Model: Resolution

dC

dt
= Chyd+Cvol+Ccar−r−Csed

dA

dt
= Csil−a+2Ccar−r−2Csed
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Carbon Cycle Model: Resolution

Steady state conditions: ∆t > 106 yr

dC

dt
= 0 et

dA

dt
= 0

Accordingly, the balance equations for C et A become

Chyd+Cvol+Ccar−r−Csed = 0 (1)

Csil−a+2Ccar−r−2Csed = 0 (2)

Finally, equation (1)− 1
2 × equation (2) yields

Chyd+Cvol =
1
2 Csil−a
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Carbon Cycle Model: Resolution

Initial problem reduced to: Csil−a =?

Criv =

66%︷ ︸︸ ︷
Csil−a︸ ︷︷ ︸
32% ⇐

+Ccar−a︸ ︷︷ ︸
34%

+

⇒ 34%︷ ︸︸ ︷
Ccar−r︸ ︷︷ ︸
34%

Riverine HCO−3 data analysis
total amount: 31,6 – 37,7×1012molHCO−3 per year
66% stem from the atmosphere

Hence:
Csil−a= 0.32×Criv

and thus
Chyd+Cvol= 0.16×Criv.
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Solution and Interpretation

Result

Since
Criv = (31.6 – 37.7)×1012mol C/yr,

we find that

Chyd+Cvol = (5.1 – 6.0)×1012mol C/yr
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Solution and Interpretation

Interpretation

Comparison with anthropogenic CO2 emissions

Secondary result: sedimentary flux Csed

Csed = Chyd+Cvol+Ccar−r (equation (1))

= 1
2 Csil−a+Ccar−r

= 1
2 Csil−a+

1
2 Ccar−a+

1
2 Ccar−r

= 1
2 Criv

Hence:

Csed = (15.8 – 18.9)×1012mol C/an
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Solution and Interpretation

Fossil Fuel Combustion and Cement Production
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Total Emissions

Coal Oil Gas Cement Flaring Total
1850 4.5 0.0 0.0 0.0 0.0 4.5
1900 42.9 1.3 0.3 0.0 0.0 44.5
1950 89.9 35.3 8.1 1.5 1.9 135.8
2000 197.5 234.8 107.3 18.8 4.0 562.5
2014 343.1 273.3 151.9 47.3 5.7 821.3

Units: Tmol C/yr (original data in TgC/yr). Data sources: Boden et al. (2011).
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Carbon Cycle: Present-day and Pre-industrial
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Carbon Cycle: Present-day and Pre-industrial
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Connecting the Carbon and Alkalinity Budgets

dC

dt
= Chyd+Cvol+Ccar−r−Csed

dA

dt
= Csil−a+2Ccar−r−2Csed

dA

dt
−2× dC

dt
= Csil−a−2× (Chyd+Cvol)
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Basic Constraints of the System: Time Scales > 1 Myr

τcarbon ≃ 100 kyr

τalkalinity ≃ 50 kyr

Long time-scales (typically > 1 Myr):

Global budgets of C and of A balanced
dA

dt
= 0

dC

dt
= 0

=⇒ Csil−a = 2× (Cvol+Chyd)
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Basic Constraints of the System: Time Scales < 1 Myr

On time scales of 10 – 100 kyr

constraint fulfilled on average only ⇒ fluctuations possible

classically, it has been assumed that hydrothermal and
volcanic activity exhibit only small variability on these
time scales

Chyd+Cvol
∼= Chyd+Cvol =

1
2 Csil−a

Hence
dA

dt
−2× dC

dt
= (Csil−a−Csil−a)

dA

dt
−2× dC

dt
=∆Csil−a
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Sensitivity Analysis: Variable Silicate Weathering

∆Chyd+vol ≡ 0
Constant Ccar−r

t t
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Sensitivity Analysis: Variable Carbonate Weathering

∆Chyd+vol ≡ 0
Constant Csil−a

CaCO3 depositionmol/yr

t

Atmospheric CO2
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Sensitivity Analysis: How Does it Work in a Model?

MBM – Multi-Box Model of ocean-atmosphere carbon cycle

ten oceanic and one atmospheric reservoirs

realistic hypsometry

fully coupled to . . . 304 copies of

MEDUSA Model of Early Diagenesis in the Upper Sediment (A)

bioturbated mixed-layer with 21 grid-points
on top of a stack of thin layers (sediment core)

solves time-dependent transport-reaction equations

solids: calcite, aragonite, POM, clay

solutes: CO2, HCO
−
3 , CO

2−
3 , O2

fully bi-directional exchange between the two zones
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Bicarbonate Production Rate Scenarios

Carbonate Weathering HCO3
− Production
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CO2 Consumption Rate Scenarios

Carbonate Weathering CO2 Consumption
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pCO2 and Calcite Saturation Horizon Variations
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Summary

Geochemical Carbon Cycle: complex system

⇒ quantitative study requires models

Four stages for development of a model
1 Identification of the problem
2 Formulation of the model
3 Resolution of the model
4 Interpretation of the results

Illustration on an actual example
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