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Abstract: We present the Fourier parameter fit method, a new spectroscopic mode identification

method for non-radially pulsating stars. It relies on a direct fit to the Fourier parameters zero point,

amplitude and phase across the line profile. The quality of the obtained fits is quantified by means

of a χ2-goodness-of-fit test and the optimization is carried out with genetic algorithms permitting

the search over a large parameter space. The displacement field adopted for the calculation of the

theoretical Fourier parameters is valid in the limit of slow rotation and takes into account first order

effects of the Coriolis force. We tested the method for low-degree modes (` ≤ 4) in a range of different

settings of pulsational and stellar parameters. These tests showed that in general the azimuthal order

m can be determined without ambiguity for modes with ` ≤ 2, whereas the determination of ` is

generally affected by an error of ±1.

1 Introduction

Asteroseismology relies on a precise fit of measured and theoretical frequency values. Obtaining
a unique fit is especially difficult for δ Scuti or β Cephei stars, which mainly exhibit non-radial
low-degree, low-order pulsation modes whose frequency spacing is far below the asymptotic
limit. Moreover, for most δ Scuti stars we only observe a fraction of frequencies predicted by
linear pulsation theory. Therefore, a simple matching of the observed frequency pattern with
a theoretical pattern has been unsuccessful.

In order to overcome this problem, a large number of mode identification (MI) methods,
both, for photometry and spectroscopy, have been developed. Whereas photometric MI tech-
niques are only sensitive to the spherical degree ` of a pulsation mode, spectroscopic MI meth-
ods, which make use of the temporal change of a line profile, permit the determination of the
azimuthal order m as well as other parameters, such as the intrinsic displacement amplitude
or the stellar inclination angle. By combining light and velocity variations, information about
the efficiency of convection can be acquired (Daszynska-Daszkiewicz et al. 2002)

The previous MI methods have one thing in common: no confidence intervals for the ob-
tained fits can be given. The moment method (Balona 1986, Aerts 1993, Briquet & Aerts
2003) and the pixel-by-pixel method (Mantegazza 2000) both quantify the goodness of fit with
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discriminants that are not directly related to the observational uncertainties. Therefore, it is
often not possible to select between different obtained solutions if their discriminants are too
close.

2 Computation of the line profiles

We have implemented the calculation of the pulsationally distorted absorption line profiles in
a C-program code. Our description of the Lagrangian displacement field ξ is limited to linear
pulsations of a slowly rotating star and takes into account the effects of the Coriolis force to
the first order. Since deviations from spherical symmetry due to centrifugal forces are ignored,
our formalism provides only a useful description of the resulting velocity field for pulsation
modes where Ω/ω < 0.5 (Aerts & Waelkens 1993, Schrijvers et al. 1997). This limitation
excludes a realistic modeling of rapidly rotating stars and low frequency g-modes. For higher
frequency p-modes such as observed in many δ Scuti stars the given criterion is fulfilled and
good approximation provided. The code is also capable of computing a displacement field and
resulting line profiles and light variations, respectively, for a symmetry axis that is not aligned
with the rotation axis, as it is observed in roAp stars (Kurtz 1982).

The computation of absorption line profiles is carried out by a numerical integration over the
visible disk calculated from orthogonal projection of the three-dimensional displaced surface.
Therefore, deviation from spherical symmetry are taken into account. Furthermore, we assume
that the intrinsic line profile is a Gaussian, which may undergo equivalent width changes due
to temperature variations.

3 The Fourier Parameter Fit method

In our method, the Fourier Parameter Fit (FPF) method, we directly fit the observed Fourier
parameters with theoretical values by applying a χ2-test. The main differences to previous
similar MI methods are the following:

• We utilize all available information of the Fourier parameters, zero point, amplitude and
phase across the line.

• The calculation of χ2 enables us to quantify the significance of our obtained fits.

• The optimization is carried out with genetic algorithms, which permit the detection of
local minima in a large multi-parameter space in much shorter computational time than
a grid.

Time series spectra of high resolution (R > 40000) and high signal-to-noise ratio (S/N> 200)
are required in order to enable a successful application of the FPF method. For multi-periodic
stars, lengthy campaigns covering several months of spectroscopy accompanied by simultaneous
photometric measurements are the best approach (e.g., Aerts et al. 2004).

The theoretical Fourier parameters are computed from a least-squares fit of typically ten
synthetic mono-mode line profiles evenly sampled over one pulsation cycle. As for the obser-
vational Fourier parameters, here we also fix the frequency during the least-squares fit of the
wavelength bins and only derive the zero point Zλ, the amplitude Aλ and the phase φλ as a
function of wavelength.

The observational variance σ2

λ of the intensity of every pixel across the profile must be
derived very carefully, since the value of χ2 is very sensitive to this variance. σ2

λ is generally



not constant along the profile, but increases towards its center due to the lower signal present
there. It can be directly derived from the error matrix of the multi-period least-squares fit or
the residuals after prewithening of all frequencies.

Our approach is the following: we first determine the pulsationally independent stellar pa-
rameters v sin i, equivalent width W0 and intrinsic line width σ by fitting the observed zero
point profile Zλ with static rotationally broadened line profiles. We assume Zλ to be indepen-
dent of the pulsation, which is true for a low ratio of the radial velocity amplitude to v sin i.
During the optimization process we set the values of these parameters as variable in a narrow
range set by their derived uncertainties.
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Figure 1: Application of the FPF method to synthetic line profile variations of a ` = 2, m = 1
displacement field (300 spectra, S/N=200). The left panels show, from top to bottom, the zero
point, amplitude and phase across the line of the input data (black crosses with error bars)
and the two best fits (lines). The four panels at the right hand side show χ2 with respect to
` (top left), m (top right), the pulsational amplitude (bottom left) and the inclination angle
(bottom left). Every single dot represents a model computed during the genetic optimization.
The vertical green line is at the position of the input parameter values and the horizontal red
line denotes the 95 %-confidence limit.

The pulsational parameters of the modes are derived from the amplitude and phase across
the line. The reduced χ2

ν is calculated from complex amplitudes in order to combine amplitude
and phase information in the following way

χ2

ν =
1

2nλ − m

nλ
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2
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+
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2

σ2
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]

(1)

where nλ is the number of pixels across the profile, m is the number of free parameters, Ao and
At denote observationally and theoretically determined values, respectively, AR = Aλ cos φλ

and AI = Aλ sin φλ are the real and imaginary part of the complex amplitude, and σ2 is the
observational variance. Eq. (1) can be easily modified if the observational amplitude and phase
from photometric passbands should be included for the calculation of χ2

ν.



Since the amplitude and phase of a given wavelength bin are treated as independent vari-
ables, the variances are calculated from

σ2

R,λ = σ(Aλ)
2 cos2 φλ + σ(φλ)

2A2

λ sin2 φλ (2)

σ2

I,λ = σ(Aλ)
2 sin2 φλ + σ(φλ)

2A2

λ cos2 φλ (3)

In the case of a multi-periodic star, it is possible to optimize the sum of the χ2

ν values
of all present modes simultaneously taking common values of the pulsationally independent
parameters inclination, v sin i, σ and W . By doing so, especially the stellar inclination angle
and henceforth also the intrinsic pulsation amplitudes of the modes can be better reproduced,
since we take advantage of the fact that all observed modes are seen at the same aspect angle.
Such an improvement for the MI in multi-periodic stars has also been acquired by Briquet &
Aerts (2003) for the case of the moment method.

We carry out the search for the best fitting model by means of genetic optimization algo-
rithms enabling the exploration of a large parameter space in much shorter computing time
than can be done by grid calculations. The basis of a genetic code is a stochastically selected
set of models, which evolves in time towards better models by favoring those having a higher
fitness (lower χ2

ν). The strength of genetic algorithms is especially their ability to explore many
local minima simultaneously and consequently to locate the absolute minimum of a complex
multi-parameter optimization problem.

Important diagnosis tools for determining the stability of the obtained solutions are dia-
grams, where for each computed model, χ2 is plotted with respect to a tested parameter (see
right-hand side of Fig. 1). Such diagrams help to estimate the uncertainty of the derived
parameter values.

4 Tests for low-degree modes

We have tested the FPF method for low-degree pulsation modes (` ≤ 4, 0 ≤ m ≤ ` for each `)
for stellar model parameters resembling those of the δ Scuti star FG Vir (HD 106384, Breger
et al. 2005, Daszynska-Daszkiewicz et al. 2005). These tests were carried out in a classical way
by fitting simulated observations of line profile variations. We will here briefly summarize the
obtained results.

The tests showed that we can generally derive the azimuthal order m unambiguously for
input m-values of 0 ≤ m ≤ 2. For higher m-values the uncertainty increases to ±1. The value
of ` is less constrained and generally affected by an uncertainty of ±1. These numbers must
be understood as crude estimates, since the precision to which ` and m can be determined
strongly depends on the pulsational amplitude, the S/N and v sin i. The visibility of low-degree
modes in the line profile variations is favored for low projected rotational velocities, whereas
high-degree modes are more easy seen at high values of v sin i, i.e., the intensity variations in
the profile have higher relative amplitude. In principle, the method can handle any value of `,
provided that the pixel-by-pixel amplitude is high enough.

The accuracy to which v sin i can be determined is in the range of 1 km s−1 for tested
v sin i-values between 10 and 100 km s−1. Below v sin i =10 km s−1 the uncertainty in deriving
v sin i rapidly increases due to the larger impact of the unknown intrinsic line width on the fit.
The lower v sin i-limit for the application of the FPF method is at about 5 km s−1. An example
fit to the Fourier parameters of synthetic profiles is shown the left-hand side of Fig. 1.

One of the results of our tests is that non-axisymmetric modes are better suited for deriving
the inclination angle (see Fig. 2). For axisymmetric modes, the sensitivity of χ2 with respect



to the inclination is very small due to the fact that we cannot decouple the intrinsic amplitude
and the inclination and, since we do not know the intrinsic amplitude, we can scale it such that
any inclination can be fitted satisfactorily.
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Figure 2: Determination of the stellar inclination angle from the application of the FPF method
to synthetic line profiles (v sin i = 30 km s−1, i = 25◦). The derived χ2

ν-values are shown as a
function of the inclination for different displacement fields (solid lines) and a multi-mode fit to
the non-axisymmetric modes (crosses). Axisymmetric modes are not well suited for deriving the
inclination angle. A simultaneous fit to all non-axisymmetric modes provides the best estimate
of the inclination.

The best approach in order to derive a more precise inclination value is a simultaneous fit to
the Fourier parameters of all detected non-axisymmetric pulsation modes with common values
of v sin i, intrinsic line width, equivalent width and inclination. Such a multi-mode fit can also
constrain other pulsational parameters better, but due to the large number of free parameters
it is more time consuming.

A comparison with the moment method and the pixel-by-pixel method showed that espe-
cially m can be determined with much better precision by the FPF method. This is mainly
due to the fact that for the determination of the pulsational parameters, only amplitude and
phase across the line profile are taken into account whereas the pulsationally independent zero
point profile is ignored.

Our tests showed that the FPF method is ideally suited for the identification of pulsation
modes of slowly to intermediate rotating stars which mainly exhibit low-degree modes. The
high sensitivity with respect to the identification of m makes it an excellent tool complementary
to the identification method by non-adiabatic observables (Daszynska-Daszkiewicz 2002), where
only ` can be determined.
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