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Abstract: Twenty-five hundred years ago the Pythagorean Brotherhood invented the idea of the

Music of the Spheres. That idea languished in scientific thought from the time of Kepler 400 years

ago, until the 1970s when real sounds were found and recognised in the sun and stars. Stars pulsate

both with sound waves in pressure modes and in gravity modes with buoyancy as the restoring force.

Those pulsations allow us literally to see inside the stars to know their interiors. Oscillations in 1-D

and 2-D are introduced here, leading to 3-D descriptions of the changing shapes of pulsating star.

Some properties of pressure modes and gravity modes are explained, and a simple explanation of

asteroseismology is given. Some selected cases illustrate amazing discoveries from our new ability to

see inside the stars.

1 Introduction

1.1 The Music of the Spheres

Pythagoras of Samos (c. 569 − 475 BC) is best-known now for the Pythagorean Theorem
relating the sides of a right triangle: a2 + b2 = c2, but his accomplishments go far beyond this.
When Pythagoras was a young man (c. 530 BC) he emigrated to Kroton in southern Italy where
he founded the Pythagorean Brotherhood who soon held secular power over not just Kroton,
but more extended parts of Magna Grecia. He and his followers were natural philosophers
(they invented the term “philosophy”) trying to understand the world around them; in the
modern sense we would call them scientists. They believed that there was a natural harmony
to everything, that music, mathematics and what we now call physics were intimately related.
In particular, they believed that the motions of the sun, moon, planets and stars generated
musical sounds. They imagined that the Earth is a free-floating sphere and that the daily
motion of the stars and the movement through the stars of the sun, moon and planets were the
result of the spinning of crystalline spheres or wheels that carried these objects around the sky.
The gods, and those who were more-than-human (such as Pythagoras), could hear the hum of
the spinning crystalline spheres: they could hear the Music of the Spheres (see Koestler 1959).

The idea of the Music of the Spheres seems to resonate in the human mind; the expression is
alive and current today, 2500 years later. A century after Pythagoras, Plato (c. 427− 347 BC)
said that “a siren sits on each planet, who carols a most sweet song, agreeing to the motion of her
own particular planet, but harmonising with all the others” (see Brewer 1894). Two millennia
after Plato, Johannes Kepler (1571 − 1630) so believed in the Music of the Spheres that he
spent years trying to understand the motions of the planets in terms of musical harmonies. He
did admit that “no sounds are given forth,” but still held “that the movements of the planets
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are modulated according to harmonic proportions.” It was only after Herculean efforts failed
that Kepler gave up on what he wanted to be true, the Music of the Spheres, started over and
discovered his famous third law for the planets, P 2 = a3. It was this willingness to discard
a cherished belief, an ancient and venerable idea, and begin again that made Kepler a truly
modern scientist.

William Shakespeare (1564 − 1616) was a contemporary of Kepler, and of course you can
find the Music of the Spheres in Shakespeare (Merchant of Venice, v. 1):

There’s not the smallest orb which thou beholdest
but in his motion like an angel sings
Still quiring to the young-eyed cherubim

The Music of the Spheres never left artistic thought or disappeared from the language, but
as a “scientific” idea it faded from view with Kepler’s Laws of motion of the planets. And so
it languished until the 1970s when astronomers discovered that there is resonant sound inside
stars, that stars “ring” like giant bells, that there is a real Music of the Spheres.

1.2 Seeing with sound

In the opening paragraph of his now-classic book, The Internal Constitution of the Stars (Ed-
dington 1926), Sir Arthur Stanley Eddington lamented:

At first sight it would seem that the deep interior of the sun and stars is less
accessible to scientific investigation than any other region of the universe. Our
telescopes may probe farther and farther into the depths of space; but how can we
ever obtain certain knowledge of that which is hidden behind substantial barriers?
What appliance can pierce through the outer layers of a star and test the conditions
within?

Eddington considered theory to be the proper answer to that question: From our knowledge
of the basic laws of physics, and from the observable boundary conditions at the surface of a
star, we can calculate its interior structure, and we can do so with confidence.

While we humans shower honours, fame and fortune on those who can run 100m in less
than 10 s, leap over a 2-m bar, or lift 400 kg over their heads, cheetahs, dolphins and elephants
(if they could understand our enthusiasm for such competitions) would have a good laugh at
us for those pitiful efforts. We are no competition for them in physical abilities. But we can
calculate the inside of a star! That is at the zenith of human achievement. No other creature
on planet Earth can aspire to this most amazing feat.

Some humility is called for, however. In The Internal Constitution of the Stars Eddington
reminds us on page 1: “We should be unwise to trust scientific inference very far when it
becomes divorced from opportunity for observational test.” Indeed! Therefore he would have
been amazed and delighted to know that there is now a way to see inside the stars – not just
calculate their interiors – but literally see. We have invented Eddington’s “appliance” to pierce
the outer layers of a star: It is asteroseismology, the probing of stellar interiors through the
study of their surface pulsations.

Stars are not quiet places. They are noisy; they have sound waves in them. Those sounds
cannot get out of a star, of course; sound does not travel in a vacuum. But for many kinds of
stars – the pulsating stars – the sound waves make the star periodically swell and contract, get
hotter and cooler. With our telescopes we can see the effects of this: the periodic changes in



the star’s brightness; the periodic motion of its surface moving up-and-down, back-and-forth.
Thus we can detect the natural oscillations of the star and “hear” the sounds inside them.

Close your eyes and imagine that you are in a concert hall listening to an orchestra tuning
up: The first violinist walks over to the piano and plunks middle-A which oscillates at 440Hz.
All the instruments of the orchestra then tune to that frequency. And yet, listen! You can hear
the violin. You can hear the bassoon. You can hear the French Horn. You can hear the cello,
the flute, the clarinet and the trumpet. Out of the cacophony you can hear each and every
instrument separately and identify them, even though they are all playing exactly the same
frequency. How do you do that?

Each instrument in the orchestra is shaped to put power into some of its natural harmonics
and to damp others. The shape of the instrument determines its natural oscillation modes, so
determines which harmonics are driven and which are damped. It is the combination of the
frequencies, amplitudes and phases of the harmonics that defines the character of the sound
emanated, that gives the timbre of the instrument, that gives it its unique sound. It is the
combination of the harmonics that defines the rate of change of pressure with time emanating
from the instrument – that defines the sound waves it creates.

A sound wave is a pressure wave. In a gas this is a rarefaction and compression of the gas
that propagates at the speed of sound. The high pressure pushes, compresses and propagates.
Ultimately, this is done at the molecular level; the information that the high pressure is coming
is transmitted by individual molecular collisions. In the adiabatic case, the speed of sound
is vs =

√

ΓP
ρ

, where Γ is the adiabatic exponent, P is pressure and ρ is density. Of course,

for a perfect gas P = ρkT

µ
, where µ is mean molecular weight, thus vs =

√

ΓkT
µ

. The changes

in pressure are therefore accompanied by changes in density and temperature. Principally, as
we can see from the last relationship, the speed of sound depends on the temperature and
chemical composition of the gas. Thus, if the temperature is higher, and the molecules are
moving more quickly, then they collide more often and the sound speed is higher. And at a
given temperature in thermal equilibrium, lighter gases move more quickly, collide more often,
and the sound speed is higher than for heavier gases.

This last effect is the cause of a well-known party trick. Untie a helium balloon, breathe
in a lung-full of helium, and you will sound like Donald Duck when you talk! The speed of
sound in helium at standard temperature and pressure is 970m s−1, compared to 330m s−1 in
air (78% N2, 21% O2 and 1% Ar). With the nearly three times higher sound speed in helium
the frequency of your voice goes up by that factor of three, hence the high-pitched hilarity. (As
an aside: breathing helium is safe, so long you do not do it for too long, i.e. so long as it is
not the only thing you are breathing. It is inert and will not react chemically. Deep-sea divers
breathe heliox, a mixture of helium and oxygen, to reduce decompression time compared to
breathing an air mixture, since helium comes out of solution in the blood more quickly than
does molecular nitrogen.)

Thus, if you can measure the speed of sound in a gas, you have information about the
temperature and chemical composition of that gas, and, from the equation of state, the pressure
and density. Stars are made of gas, and they are like giant musical instruments. They have
natural overtones (not the harmonics of musical instruments, so the sounds of the stars are
dissonant to our ears when we play them at audible frequencies), and just as you can hear what
instrument makes the sounds of an orchestra, i.e. you can “hear” the shape of the instrument,
we can use the frequencies, amplitudes and phases of the sound waves that we detect in the
stars to “see” their interiors – to see their internal “shapes”. A goal of asteroseismology is to
measure the sound speed throughout a star so that we can know those fundamental parameters
of the stellar structure.



We humans are incredibly visual creatures; for us, sight is a dominant sense. We think
“seeing is believing”. Yet other animals perceive the world in other ways. Take a dog for a
walk. The dog dedicates 60 times more brain to its sense of smell than you do. Dogs can see,
but for them “smelling is believing”. If a dog sees an object that it does not understand and
does not trust, it will approach cautiously (sometimes with its hackles up) until the suspicious
object can be smelled, and then the situation will be clarified and the dog will “know” the
object. For them “smelling is believing.”

What happens to you when you “see”? Does your brain detect the light? Is there a real
image in your head? Of course not. Your eye forms an image on your retina, the photons are
absorbed, an electro-chemical signal passes down your optic nerve to the part of your brain that
interprets the incoming visual signal, and you have the impression that there is a 3-D theatre
in your head. You “see” an image of the world.

So what then happens to you when you “hear”? Does your brain hear the sound? Are
the sound waves in your head? Again, of course not. Your eardrum oscillates in and out with
the increasing and decreasing pressure of the sound wave. Through the bones in your ears
and through sensitive hairs the sound is transmitted, then transformed into an electro-chemical
signal that passes to the part of your brain that interprets the incoming aural signal, and you
have the impression that there is a 3-D sound system in your head. You “hear” the world.

While our perceptions of sight and sound are very different experiences, they are physio-
logically similar, and they are both providing us with information about the world around us.
So is possible to “see” with sound? Yes. Of course it is. Bats do it with echo-locating. They
emit sounds and the returning echoes tell the bat where everything in its environment is, down
to the small insects that they catch for food (and also provide velocity information from the
Doppler shift). Those sounds are converted to electro-chemical signals in the bat’s brain, and
the bat has a picture of the world around it. That is “seeing” with sound. A colony of a million
bats leaving a narrow cave mouth in the dark has few collisions; the bats can “see” each other.
It is not possible to get inside the mind of another creature. We cannot even do it with a
fellow human; we cannot know if another person has the same experience that we have, e.g.,
of colour, of tone, of taste. We assume that they do, and get along well with that assumption,
so similarly we may assume that bats “see” the world through sound. Their sense of hearing
powers the 3-D theatre in their minds, just as our sense of sight does for us. We may surmise
that the experiences of seeing with light or sound are similar.

Similarly, asteroseismology uses astronomical observations – photometry and spectroscopy
– to extract the frequencies, amplitudes and phases of the sounds at a star’s surface. Then we
use basic physics and mathematical models to know the sound speed inside a star and from
that to determine its temperature throughout its interior. With reasonable assumptions about
chemical composition and knowledge of appropriate equations of state, pressure and density
can be derived. These are, in a real sense, all the equivalent of the electro-chemical signals in
our brains. We build up a picture in the 3-D theatre in our minds of what the inside of a star
looks like. We see inside the star. The sounds tell us what the interior structure of the star has

to be.
Who hasn’t been amazed to see a picture of the face of a foetus in the womb, imaged using

ultrasound waves? Do you question the reality of that? No. That is a real picture of the baby
before it is born. Identically, using infrasound from the stars, the pictures of their insides that
we see using asteroseismology have this same reality.

We have answered Eddington’s question, “What appliance can pierce through the outer
layers of a star and test the conditions within?”

The answer is: Asteroseismology, the real Music of the Spheres.



1.3 Can we “hear” the stars?

So you have been persuaded that there are sounds in stars and we can use those to “see” inside
them. But can we actually hear them? Is there really a Music of the Spheres? Amazingly, the
answer to that is also yes.

What we consider to be musical is mostly the relationships among the frequencies, ampli-
tudes and phases of sounds, not their absolute pitch. A few humans have perfect pitch, and
serious musicians and music-lovers do care about the key that a piece of music is played in –
for the sound, and sometimes for the ease of playing it. But for most people a change of key
does not change the character of the music – a melody is still recognisable in another key –
because the relationships among the frequencies are not changed.

Now think about this: We have sound recording equipment that can detect the ultrasound
of bats. We record the frequencies, amplitudes and phases of those sounds. Then, we simply
perform a key change and shift the frequencies down into the audible range while keeping
the frequency ratios the same, while keeping the amplitude and phase relationships; i.e. we
perform a change of key. Played through a speaker we can then hear what bats sound like. It
is a legitimate experience and may even be close to what it would be like to have ultrasound
hearing and actually hear the bats directly with our own ears. (Fortunately, we cannot hear
the bats, for they are loud and they are noisy; we probably would not like it.)

Similarly, with the right equipment we may record the infrasounds of whales, perform a key
change to shift them up in frequency into the audible, and experience the haunting “songs” of
the whales. This, too, is really hearing the sounds of the whales. (Unfortunately, the whales
can hear the infrasounds of our many ships, so their environment has become vastly noisier
over the last two centuries.)

Therefore, it is fair to say that when we observe the frequencies, amplitudes and phases of
a pulsating star that are caused by sounds in the star, and we shift those with a key change up
into the audible and play them through a speaker, we are experiencing the real Music of the
Spheres. Pythagoras and Kepler would have been amazed.

1.3.1 StellarMusicNo1

While it is possible to use our observations of pulsating stars to generate sound files for the
stars, and listen to them, we do not do science that way. Asteroseismology uses the frequencies,
amplitudes and phases from observations of pulsating stars directly to model and probe the
stellar interiors. But the sounds are intellectually intriguing, and they are even aesthetically
pleasing.

The first musical composition based on the sounds of the stars is called StellarMusicNo1,
by Jenõ Keuler and Zoltán Kolláth of Konkoly Observatory. Discussion of the music, a sound
file and a score can be found on Zoltán Kolláth’s website1.

1.4 Pressure modes and gravity modes

When an idea is being discussed in Belgium, the response often begins, “Well, it’s not as simple
as that!” This expression, much loved by Belgian astronomers, is often useful to the rest of us,
too. Therefore, given all that has been said so far: It is not as simple as that.

There is more to stellar pulsation than acoustic waves – sound waves – in stars. Those
acoustic waves are known as “pressure” modes, or p-modes. There are equally important
“gravity” modes, or g-modes, where the restoring force of the pulsation is not pressure, but

1https://www.konkoly.hu/staff/kollath/stellarmusic/



buoyancy. Much of the picture of stellar pulsation that we have been painting is a valid view
of gravity modes, too; they also probe the interiors of stars, and let us see below their surfaces.
But gravity modes are not acoustic – they are not caused by sounds in the stars. We will
discuss these two kinds of pulsation in parallel as our view of stellar pulsation grows clearer.

Now we need to build in our minds a picture of what the 3-D pulsations of stars look like.

2 1-D oscillations

2.1 1-D oscillations on a string

Figure 1: The first three oscillation modes for a string that is fixed at both ends, such as a
violin string or a guitar string. On the left is the fundamental mode; in the centre is the first
overtone which has a single node; and on the right is the second overtone which has two nodes.
Note that the nodes are uniformly spaced.

Fig. 1 shows the fundamental mode and the first and second overtone modes for a vibrating
string such as those on violins, guitars or any musical string instrument. The frequencies of
these modes depend on the length of the string, the tension and the material the string is made
of. Importantly, the tension and composition of the string are uniform along its length. Under
those conditions the first overtone mode has twice the frequency of the fundamental mode, the
second overtone mode has a frequency three times that of the fundamental mode, and so on.
We therefore refer to these overtones as “harmonics”, since they have small integer ratios. To
our ears the frequencies with small integer ratios, such as 2:1, 3:2, 4:3, are harmonious. But
note that here we distinguish the words “overtone” and “harmonic”; while they are the same
for modes on a uniform string, they are not the same for stars, as we will see.

2.2 1-D oscillations in an organ pipe

If instead of a string we think of the oscillations of the air in an organ pipe, or any wind
instrument with one closed end, then there is a displacement node at the closed end of the
pipe, and the other, open end has a displacement antinode. Fig. 2 shows this schematically.
As for the string in the last section, note that the overtones are harmonic with small integer
ratios – in the cases in Fig. 2 these are 3:1 and 5:1 – since the air temperature and chemical
composition are uniform within the pipe, so the sound speed is constant along the pipe. While
the organ pipe is in some ways a simple analogue of a radially pulsating star, the uniform
temperature is far from true for stars, as we will see, and therein lies a big difference.



Figure 2: The first three oscillation modes for an organ pipe with one end (on the left) closed,
and one end (on the right) open. On the left is the fundamental mode; in the centre is the first
overtone which has a single node; and on the right is the second overtone which has two nodes.
Note that the open end is an anti-node in the displacement of the air, and that the nodes are
uniformly spaced.

3 2-D oscillations in a drum head

To imagine the oscillations of a 2-D membrane, a drumhead is easy to visualise, as can be seen in
Fig. 3. Because the drumhead is two-dimensional, there are nodes in two orthogonal directions.
One set of modes has nodes that are concentric circles on the drumhead, and those modes are
called radial modes. For a drumhead the rim is always a node, so the fundamental radial mode
simply has the drumhead move up and down with circular symmetry with maximum amplitude
at the centre, which is an antinode. The first radial overtone has a node that is a circle on the
drumhead with the centre and outside annulus moving in antiphase; the second radial overtone
has two concentric circles as nodes, and so on. (These radial modes are rapidly damped in an
actual drumhead, so contribute only to the initial sound of the drum being struck, and not
much to the ringing oscillations that follow.)

The second direction of nodes in a drumhead gives rise to the nonradial modes. The first
nonradial mode is the dipole mode which has a node that is a line across the drumhead dividing
it in two, so that the two halves oscillate in antiphase. The second nonradial overtone has two
crossing nodes dividing the drum into four equal sections. Of course, there are modes that
have both radial and nonradial nodes. The important point about the drumhead is that these
modes do not have frequencies with small integer ratios, so the drum is not harmonic; it does
not ring with a musical sound2. For a uniform density and tension drumhead, the solutions to
the oscillation equations are Bessel functions; the radial nodes in Fig. 3 are schematic only. To
visualise drumhead oscillations better, excellent graphical movies can be found on the web site
of Dan Russell3.

4 3-D oscillations in stars

Stars are three-dimensional, so their natural oscillation modes have nodes in three orthogonal
directions. Those are concentric radial shells (r), lines of latitude (θ) and lines of longitude (ϕ).
For a spherically symmetric star the solutions to the equations of motion have displacements
in the (r, θ, ϕ) directions and are given by

2Tympani do have a musical tone. This is the result of careful design where the air pressure in the drum
damps some modes, and allows those that are close to harmonic to oscillate, thus giving a recognisable note.

3http://www.kettering.edu/ drussell/Demos/MembraneCircle/Circle.html



Figure 3: Schematic representations of some oscillation modes in a drum head. The rim of
the drum is fixed, so is forced to be a node in all cases. The top left circle represents the
fundamental radial mode for the drum: the rim is a node and the centre of the drum is an
anti-node. The middle top figure represents the first radial overtone, with one node which is
a concentric circle. The plus and minus signs indicate that the outer annulus moves outwards
while the inner circle moves inwards, and vice versa. The top right figure represents the second
radial overtone. The bottom left figure shows the simplest nonradial mode for a drum, the
dipole mode, where a line across the middle of the drum is a node and one side moves up,
while the other moves down, then vice versa. The middle bottom panel in the quadrupole
nonradial mode, and the bottom right figure shows the second overtone quadrupole mode. The
modes are characterised by quantum numbers, one for the number of radial nodes, and one for
the number of nonradial nodes. So reading from left-to-right, top-to-bottom, the modes are
numbered (0,0), (1,0), (2,0), (0,1), (0,2) and (2,2). A similar notation in 3-D exists for stellar
pulsation modes, as we will see.

ξr (r, θ, ϕ, t) = a (r)Y m
` (θ, ϕ) exp (iωt) (1)

ξθ (r, θ, ϕ, t) = b (r)
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∂θ
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` (θ, ϕ)

∂ϕ
exp (iωt) (3)

where ξr, ξθ and ξϕ are the displacements, a(r) and b(r) are amplitudes, ω is the oscillation
frequency and Y m

` (θ, ϕ) are spherical harmonics given by
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and P m
` (cos θ) are Legendre polynomials given by

P m
` (cos θ) =

(−1)m

2``!

(

1 − cos2 θ
)m

2 d`+m

d cos`+m θ

(

cos2 θ − 1
)`

(5)

where θ is measured from the pulsation pole, the axis of symmetry. In most pulsating stars that
axis coincides with the rotation axis. The main exceptions are the rapidly oscillating Ap stars
where the axis of pulsational symmetry is the magnetic axis which is inclined to the rotational
axis (see Section 7.3 below).

As with the drumheads, where there were two quantum numbers to specify the modes, for
3-D stars there are three quantum numbers to specify these modes: n is the number of radial
nodes and is called the overtone of the mode4; ` is the degree of the mode and specifies the
number of surface nodes that are present; m is the azimuthal order of the mode and specifies
how many of the surface nodes are lines of longitude. It follows therefore that the number of
surface nodes that are lines of latitude is equal to ` − m. The values of m range from −` to
+`, so there are 2` + 1 m-modes for each degree `.

What do these modes in stars look like?

4.1 Radial modes

The simplest modes are the radial modes with ` = 0, and the simplest of those is the funda-
mental radial mode with n = 0. In this mode the star swells and contracts, heats and cools,
spherically symmetrically with the core as a node and the surface as a displacement antinode.
It is the 3-D analogy to the organ pipe in its fundamental mode shown in the left-hand panel
of Fig. 2. This is the usual mode of pulsation for Cepheid variables and for RRLyrae stars,
amongst others.

The first overtone radial mode has n = 1 with a radial node that is a concentric shell within
the star. As we are thinking in terms of the radial displacement, that shell is a node that
does not move; the motions above and below the node move in antiphase. As an example, in
the roAp stars (which are nonradial pulsators) radial nodes can be directly observed in their
atmospheres with just this kind of motion in antiphase above and below the radial node (Kurtz,
Elkin & Mathys 2005). The surface of the star is again an antinode.

There are Cepheid variables, RRLyrae stars and δ Scuti stars that pulsate simultaneously
in the fundamental and first overtone radial modes. In the cases of the Cepheids and RRLyrae
stars they are known as double-mode Cepheids and RRd stars, respectively. For the Cepheids
the ratio of the first overtone period to the fundamental period is 0.71; for the δ Scuti stars it
is 0.77. This is in obvious contrast with the 0.33 ratio found in organ pipes and the 0.5 ratio
found on strings (see Figs 1 and 2).

This difference is profound and it is our first use of asteroseismology. If the star were of
uniform temperature and chemical composition (so that the sound speed were constant), then
the ratio would be similar to that in the organ pipe. The larger ratios in the Cepheids and
δ Scuti stars is a direct consequence of the sound speed gradient in them, hence the temperature
and (in places) chemical composition gradients. The small, but significant differences between
the Cepheid and δ Scuti ratios is a consequence of the Cepheid giant star being more centrally
condensed than the hydrogen core-burning δ Scuti star. Thus, just by observing two pulsation
frequencies we have had our first look into the interiors of some stars.

4Sometimes k is preferred to represent this quantum number, particularly amongst those working on pulsating
white dwarf stars.



4.2 Nonradial modes

The simplest of the nonradial modes is the axisymmetric dipole mode with ` = 1, m = 0.
For this mode the equator is a node; the northern hemisphere swells up while the southern
hemisphere contracts, then vice versa; one hemisphere heats while the other cools, and vice
versa – all with the simple cosine dependence of P 0

1 (cos θ) = cos θ, where θ is the latitude.
There is no change to the circular cross-section of the star, so from the observer’s point of view,
the star seems to oscillate up and down in space.

That is disturbing to contemplate. What about Newton’s laws? How can a star “bounce” up
and down in free space without an external driving force? The answer is that an incompressible
sphere cannot do this; it cannot pulsate in a dipole mode. After a large earthquake the Earth
oscillates in modes such as those we are describing. But it does not oscillate in the dipole mode
and bounce up and down in space. It cannot. There was a time when it was thought that stars
could not do this either (Pekeris 1938), but first Smeyers (1966) in the adiabatic case, then
Christensen-Dalsgaard (1976) more generally showed that the centre-of-mass of a star is not
displaced during dipole oscillations, so stars can pulsate in such modes.

Nonradial modes only occur for n ≥ 1, so in the case of the ` = 0 dipole mode, there is at
least one radial node within the star. While the outer shell is displaced upwards from the point
of view of the observer, the inner shell is displaced downwards and the centre of mass stays
fixed. Dipole modes are the dominant modes observed in the rapidly oscillating Ap stars, and
are also seen in many other kinds of pulsating variables.

Modes with two surface nodes (` = 2) are known as quadrupole modes. For the ` = 2,
m = 0 mode the nodes lie at latitudes ±35◦, since P 0

2 (cos θ) = 3

2
cos θ − 1

2
. The poles swell up

(and heat up, although not usually in phase with the swelling) while the equator contracts (and
cools), and vice versa. Fig. 4 shows and explains a set of octupole modes with ` = 3, giving a
mental picture of what the modes look like.

4.3 The effect of rotation: The m-modes

In eqs. 1 and 4 it can be seen that for m-modes (i.e., modes with m 6= 0) the exponentials
in the two equations combine to give a time dependence that goes as exp[i(ωt + mϕ)]. This
phase factor in the time dependence means that the m-modes are travelling waves, where our
sign convention is that modes with positive m are travelling against the direction of rotation
(retrograde modes), and modes with negative m are travelling in the direction of rotation
(prograde modes).

For a spherically symmetric star the frequencies of all 2`+1 members of a multiplet (such as
the octupole septuplet ` = 3, m = −3,−2,−1, 0, +1, +2, +3) are the same. But deviations from
spherical symmetry can lift this frequency degeneracy, and the most important physical cause
of a star’s departure from spherical symmetry is rotation. In a rotating star the Coriolis force
causes pulsational variations that would have been up-and-down to become circular with the
direction of the Coriolis force being against the direction of rotation. Therefore, the prograde
m-modes travelling in the direction of rotation have frequencies slightly lower than the m = 0
axisymmetric mode, and the retrograde modes going against the rotation have slightly higher
frequencies, in the co-rotating reference frame of the star, thus the degeneracy of the frequencies
of the multiplet is lifted.

This was discussed by Ledoux (1951) in a study of the β Cep star β CMa. In the observer’s

frame of reference the Ledoux rotational splitting relation for a uniformly rotating star is

σn`m = σn`0 − m (1 − Cn`) Ω (6)



Figure 4: The ` = 3 octupole modes. The rows show the modes from different viewing angles;
the top row is for an inclination of the pulsation pole of 30◦, the second row is for 60◦, and
the bottom row is for 90◦. The white bands represent the positions of the surface nodes; in
the on-line colour version of the diagram red and blue represent sections of the star that are
moving in (out) and/or heating (cooling), then vice versa. In the black-and-white printed
version alternating dark sections are moving in opposite directions at any given time. The
right-hand column shows the axisymmetric octupole mode (` = 3, m = 0) where the nodes
lie at latitudes ±51◦ and 0◦. The second column from the right shows the tesseral (meaning
0 < m < `) ` = 3, m = ±1 mode with two nodes that are lines of latitude and one that is a
line of longitude. The third column from the right is the tesseral ` = 3, m = ±2 mode, and the
left column shows the sectoral mode with ` = 3, m = ±3. Importantly, rotation distinguishes
the sign of m, as discussed in the Section 4.3 Figure courtesy of Conny Aerts.

where σn`m is the observed frequency, σn`0 is the unperturbed central frequency of the multiplet
(for which m = 0) which is unaffected by the rotation, Cn` is a small constant, and Ω is the
rotation frequency. If we rewrite eq. 6 as

σn`m = σn`0 + mCn`Ω − mΩ, (7)

then it is easy to see that the Coriolis force reduces the frequency of the −m prograde mode
slightly in the co-rotating rest frame, but then the rotation frequency is added to that since
the mode is going in the direction of rotation. Likewise the +m retrograde mode is travelling
against the rotation so has its frequency is the observed frame reduced by the rotation frequency.

In the end we end up with a multiplet with 2`+ 1 components all separated by (1 − Cn`)Ω.
In a real star the various components of the multiplet may be excited to different amplitudes,
and some may not have any observable amplitude, so all members of the multiplet may not be
present. The importance for asteroseismology is that where such rotationally-split multiplets
are observed, the ` and m for the modes may be identified and the splitting used to measure
the rotation rate of the star. Where multiplets of modes of different degree are observed, it
is possible to gain knowledge of the interior rotation rate of the star – something that is not
knowable by any other means.



In the case of the sun, helioseismology has spectacularly measured the differential rotation
rate of the sun down to about half way to the core. Below the convection zone at r/R� ∼ 0.7
the sun rotates approximately rigidly with a period close to the 27-d period seen at latitudes of
about 35◦ on the surface (see Thompson et al. 2003). Within the convection zone the rotation
is not simply dependent on distance from the solar rotation axis, as had been expected in the
absence of any direct observation. It is a remarkable triumph of helioseismology that we can
know the internal rotation behaviour of the sun – thanks to m-modes!

4.4 So how does asteroseismology work?

Figure 5: This diagram shows the cross-section of a star with the ray paths of a selection of
p-modes of different degree `. The dotted circles represent the lower boundaries of the acoustic

cavities for each mode. Figure courtesy of Jørgen Christensen-Dalsgaard.

Since p-modes are acoustic waves, for modes that are not directed at the centre of the star
(i.e. the nonradial modes) the lower part of the wave is in a higher temperature environment
than the upper part of the wave, thus in a region of higher sound speed. As a consequence
the wave is refracted back to the surface, where it is then reflected, since the acoustic energy
is trapped in the star, as can be seen in Fig. 5. While the number of reflection points is not
equal to the degree of the mode, higher ` modes have more reflection points. This means
that high degree modes penetrate only to a shallow depth, while lower degree modes penetrate
more deeply. The frequency of the mode observed at the surface depends on the sound travel



time along its ray path, hence on the integral of the sound speed within its “acoustic cavity”.
Clearly, if many modes that penetrate to all possible depths can be observed on the surface,
then it is possible to “invert” the observations to make a map of the sound speed throughout
the star, and from that deduce temperature profile, with reasonable assumptions about the
chemical composition. In the sun the sound speed is now known to a few parts per thousand
over 90% of its radius. To do the same for other stars is the ultimate goal of asteroseismology.

A review of the theory of helioseismology can be found, for example, in Christensen-
Dalsgaard (2002), and rigorous discussions of the theory of asteroseismology can be found
in the course notes of Conny Aerts, Jørgen Christensen-Dalsgaard and others which can be
found through links on the website of the European Network of Excellence in Asteroseismology,
ENEAS5.

Thus asteroseismology lets us literally see the insides of stars because different modes pen-
etrate to different depths in the star. But as was noted in Section 1.4, it is not so simple as
just p-modes. We can also see inside the stars with g-modes. In fact, for some stars, and for
parts of others, we can only see with g-modes.

4.5 p-modes and g-modes

There are two main sets of solutions to the equations of motion for a pulsating star, and these
lead to two types of pulsation modes: p-modes and g-modes. For the p-modes, or pressure
modes, pressure is the primary restoring force for a star perturbed from equilibrium. These
p-modes are acoustic waves and have gas motions that are primarily vertical. For the g-modes,
or gravity modes, buoyancy is the restoring force and the gas motions are primarily horizontal.
There is also an f-mode that is somewhere in-between the p-modes and g-modes and only exists
for the lowest overtone and ` ≥ 2.

There are three other important properties of p-modes and g-modes: 1) as the number
of radial nodes increases the frequencies of the p-modes increase, but the frequencies of the
g-modes decrease, as is shown in Fig. 6; 2) the p-modes are most sensitive to conditions in the
outer part of the star, whereas g-modes are most sensitive to the core conditions, as is shown
in Fig. 7; 3) for n >> ` there is an asymptotic relation for p-modes which are approximately
equally spaced in frequency, and there is another asymptotic relation for g-modes which are
approximately equally spaced in period.

The asymptotic relations are very important in many pulsating stars. From Tassoul (1980,
1990) they are for the p-modes:

νn` = ∆ν0

(

n +
`

2
+ ε

)

+ δν (8)

where n and ` are the overtone and degree of the mode, ε is a constant of order unity, δν is
known as the “small separation”; νn` is the observed frequency, ∆ν0 is known as the “large
separation” and is the inverse of the sound travel time for a sound wave from the surface of the
star to the core and back again, given by

∆ν0 =



2

R
∫

0

dr

c(r)





−1

(9)

where c(r) is the sound speed. The large separation is obviously sensitive to the radius of the
star, hence near the main sequence it is a good measure of the mass of the star. The small

5http://www.eneas.info/



Figure 6: This diagram plots the degree ` of a mode versus its frequency for a solar model.
It clearly illustrates the general property of p-modes that frequency increases with overtone
n and degree `. For g-modes frequency decreases with higher overtone, but increases with n
if we use the convention that n is negative for g-modes. Frequency still increases with degree
` for g-modes, just as it does for p-modes. Some values of the overtone n are given for the
p-modes lines in the upper right of the figure. Note that while continuous lines are shown,
the individual modes are discrete points that are not resolved here. Figure courtesy of Jørgen
Christensen-Dalsgaard.

separation is sensitive to the core condensation, hence age of the star.
For the g-modes the nearly uniform period spacing is given by

Πn` =
Π0

√

` (` + 1)
(n + ε) (10)

where n and ` are again the overtone and degree of the mode, ε is a small constant, and Π0 is
given by

Π0 = 2π2

(∫ N

r
dr
)−1

(11)

where N is the Brunt-Väisälä frequency and the integral is over the cavity in which the g-mode
propagates (as in the right panel of Fig. 7). Deviations of the period spacing for g-modes
are used to diagnose stratification in stars, since strong mean molecular weight gradients trap
modes and cause deviations from the simple asymptotic relation given in eq. 10. This technique



Figure 7: This diagram shows ray paths for two p-modes on the left and one g-mode on the
right. The higher degree p-mode has n = 8, ` = 100; the lower degree p-mode has n = 8, ` = 2.
The g-mode has n = 10, ` = 5. Note that the g-mode is, in this case, trapped in the interior,
since this is for a solar model and the g-modes do not propagate in the convective out part
of the sun, although they potentially may very weakly may be observable at the surface from
their effects on the convection zone. This figure illustrates that the g-modes are sensitive to
the conditions in the very core of the star, an important property. From Gough et al. (1996);
used by permission.

has been particularly successful in measuring the stratification in white dwarf atmospheres with
carbon-oxygen cores and layers of helium and hydrogen above (see Section 7.4).

5 An asteroseismic HR diagram for p-mode pulsators

Fig. 8 shows a power spectrum of the radial velocity variations observed over a time span of
9.5 yr for the sun by BiSON, the Birmingham Solar Oscillation Network6. This shows the
“comb” of frequencies expected from eq. 8 for high overtone, low degree (n >> `) p-modes.
The noise level is so stunningly low in this diagram that it is essentially invisible at this scale. It
is equivalent to an amplitude of only 0.5mms−1, precise enough to detect a mode with a total
displacement over the whole pulsation cycle of only 10s of cm! It is noteworthy that the comb
of frequencies consists of alternating even and odd `-modes, as expected from eq. 8, where it
can be seen that to first order modes of (n, `) and (n − 1, ` + 2) have the same frequency. It is
the small separation, δν, that lifts this degeneracy.

That may be seen in Fig. 9 which is a portion of an amplitude spectrum of the radial velocity
variations of the sun seen as a star made by the GOLF (Global Oscillation at Low Frequencies7)
experiment on SOHO (Solar and Heliospheric Observatory8) orbiting at the Earth-Sun L1

Lagrangian point. Here it can be seen that there is a slight difference in the large separations
for even and odd `-modes (cf. ∆ν0, ∆ν1), that the small separation lifts the degeneracy between
modes of (n, `) and (n − 1, ` + 2), etc., and that there is a small difference between the small
separations for even and odd `-modes (cf. δν0, δν1).

Ultimately, it is the goal of asteroseismology for any star to detect enough frequencies over
ranges in n, ` and m that the interior sound speed may be mapped with precision, so that

6http://bison.ph.bham.ac.uk
7http://golfwww.medoc-ias.u-psud.fr
8http://sohowww.nascom.nasa.gov



Figure 8: This shows a power spectrum of radial velocity variations in the sun seen as a star for
9.5 yr of data taken with the Birmingham Solar Oscillation Network (BiSON) telescopes. The
equivalent amplitude noise level in this diagram is 0.5mms−1. Figure courtesy of the BiSON
team.

deductions can be made about interior temperature, pressure, density, chemical composition
and rotation, i.e. it is the goal to “see”, and to see clearly, inside the star. A step along the
way is to resolve sufficient frequencies in a star, and to identify the modes associated with them
with enough confidence that the large and small separations may be deduced with confidence.
That step alone leads to determinations of the fundamental parameters of mass and age for
some kinds of stars.

Fig. 10 shows an “asteroseismic HR Diagram” (Christensen-Dalsgaard 1993) where the large
separation clearly is a measure of mass (largely because of the relationship between mass and
radius), and the small separation is most sensitive to the central mass fraction of hydrogen,
hence age. Now that many solar-type oscillators have been found, it is possible to begin to
model them using the large and small separations (see Section 7.1). The pattern of high overtone
even and odd ` modes is also observed in some roAp stars, although their interpretation for
those stars is more complex because of the strong effects of their global magnetic fields on the
frequency separations (see Section 7.3).

6 A pulsation HR diagram

Fig. 11 shows a black-and-white version of the “pulsation HR Diagram” produced by Jørgen
Christensen-Dalsgaard. A much more colourful version of this diagram is frequently presented
at stellar pulsation meetings to put particular classes of stars into perspective. As an example, in
Section 4.5 it was pointed out that the g-modes are particularly sensitive to the core conditions
in the star (see Fig. 7). It is that sensitivity that has made the discovery of g-modes in the



Figure 9: This amplitude spectrum of radial velocity variations observed with the GOLF in-
strument on SOHO clearly shows the large and small separations in the p-modes of the sun.
Courtesy of the GOLF science team.

sun such a long-sought goal – so much so that the discovery of g-modes in the sun has been
claimed repeatedly, but general acceptance of those claims is still lacking. On the other hand,
g-mode pulsators are common amongst other types of stars – even some, the γ Dor stars, not
very much hotter than the sun and overlapping with the solar-like oscillators, keeping hope
alive that g-modes may eventually be detected with confidence in the sun. There are three
places in Fig. 11 where there are p-mode and g-mode pulsators of similar structure: for the
β Cep (p-mode) and Slowly Pulsating B (SPB g-mode) stars on the upper main sequence; for
the δ Sct (p-mode) and γ Dor (g-mode) stars of the middle main sequence; and for the EC14026
sub-dwarf B variables (p-mode) and the PG1716+426 stars (gmode). Stars pulsating in both
p-modes and g-modes promise particularly rich asteroseismic views of their interiors.

6.1 Why do stars pulsate: driving mechanisms

We have looked in some detail now at how stars pulsate. But why do they pulsate? Firstly, not
all stars do. It is an interesting question as to whether all stars would be observed to pulsate
at some level, if only we had the precision to detect those pulsations. For now, at the level of
the precision of our observations of mmag in photometry and m s−1 is radial velocity, we can
say that most stars do not pulsate.

The ones that do are pulsating in their natural modes of oscillation, which have been
described in the previous sections. In the longest known case of a pulsating star, that of oCeti
(Mira), we usually attribute the discovery of its variability to Fabricius in 1596. So this star has
been pulsating for hundreds of years, at least. In many other cases we have good light curves
going back over a century, so we know that stellar pulsation is a relatively stable phenomenon
in many stars. That means that energy must be fed into the pulsation via what are known as
driving mechanisms.

As a star pulsates, it swells and contracts, heats and cools as described in the previous
sections. For most of the interior of the star, energy is lost in each pulsation cycle; i.e. most
of the volume of the star damps the pulsation. The observed pulsation can only continue,
therefore, if there is some part of the interior of the star where not only is energy fed into the



Figure 10: An asteroseismic HR Diagram in which the large separation is most sensitive to
mass, and the small separation is most sensitive to age. The solid, nearly vertical lines are lines
of constant mass, and the nearly horizontal dashed lines are isopleths of constant hydrogen
mass fraction in the core. Figure courtesy of Jørgen Christensen-Dalsgaard.

pulsation, but as much energy is fed in as is damped throughout the rest of the bulk of the
star.

A region in the star, usually a radial layer, that gains heat during the compression part of
the pulsation cycle drives the pulsation. All other layers that lose heat on compression damp
the pulsation. For Cepheid variables, RRLyrae stars, δ Scuti stars, β Cephei stars – for most
of the pulsating variables seen in Fig. 11 – the driving mechanism is opacity, thus it is known
as the κ-mechanism. And for the κ-mechanism to work there must be plenty of opacity, so the
major drivers of pulsation are, not at all surprisingly, H and He.

Simplistically, in the ionisation layers for H and He opacity blocks radiation, the gas heats
and the pressure increases causing the star to swell past its equilibrium point. But the ionisation
of the gas reduces the opacity, radiation flows through, the gas cools and can no longer support
the weight of the overlying layers, so the star contracts. On contraction the H or He recombines
and flux is once more absorbed, hence the condition for a heat engine is present: the layer gains
heat on compression.

Of course, since the layers doing the driving are ionisation zones, some of the energy is being
deposited in electrostatic potential energy as electrons are stripped from their nuclei, and that
changes the adiabatic exponent, Γ. That causes the adiabatic temperature gradient to be small,
so these zones are convections zones, too, and variations in Γ can make small contributions to
the driving in some cases.

For decades the pulsation driving mechanism for β Cep stars was not understood. Only
recently has it been found that atomic diffusion levitates and concentrates enough Fe into
an ionisation zone that the κ-mechanism – operating on Fe, not H or He – can drive the
pulsation in these stars. Similarly, pulsation in the sdBV stars, labelled as EC14026 stars (p-
mode pulsators) and Betsy stars (g-mode pulsators) in Fig. 11, is driven by the κ-mechanism
operating on Fe.

The other major driving mechanism that operates in the sun and solar-like oscillators, as
well as some pulsating red giant stars, is stochastic driving. In this case there is sufficient



Figure 11: A pulsation HR Diagram showing many classes of pulsating stars for which astero-
seismology is possible. Courtesy of Jørgen Christensen-Dalsgaard.

acoustic energy in the convection zone in the star that the star resonates in some of its natural
oscillation frequencies where some of the stochastic noise is transferred to energy of global
oscillation. In a similar way, in a very noisy environment, musical string instruments can be
heard to sound faintly in resonance with the noise that has the right frequency.

The third major theoretical driving mechanism is the ε-mechanism, where in this case that
is the epsilon from dL(r) = 4πr2ρ(r)ε(r)dr. That is, it is the energy generation rate in the core
of the star. Potentially, variations in ε could drive global pulsations. This has been discussed
as a possible driving mechanism in some cases, but there is no known class of pulsating stars
at present that are thought to be driven by the ε-mechanism.

6.2 What selects the modes of pulsation in stars?

So a star is driven to pulsate by one of the driving mechanisms described above. What decides
which mode or modes it pulsates in? Why do most Cepheids pulsate in the fundamental radial
mode, but some pulsate also in the first overtone radial mode, and rarely a few pulsate only in
overtone modes? Why do the sun, solar-like oscillators and roAp stars pulsate in high overtone
p-modes? Why do white dwarfs pulsate in high overtone g-modes? What is the mode selection



mechanism in these stars?
These are complex questions for which answers are not always known. Some generalities are:

The fundamental mode is most strongly excited for many stars, as it is for musical instruments.
The position of the driving zone can determine which modes are excited, just as where a musical
instrument is excited will determine which harmonics excited, and with what amplitude. For
example, if a guitar is plucked at its twelfth fret (right in the centre of the string), then the first
harmonic (which has a node there) will not be excited. You cannot drive a mode by putting
energy in a node where that mode does not oscillate. So if the driving zone for a star lies near
the node of some modes, those modes are unlikely to be excited.

Any physical property of an oscillator that forces a node will select against some modes,
and/or perturb the frequencies and eigenfunctions of the modes. Thus in roAp stars the strong
mostly-dipolar magnetic field almost certainly determines that dipole pulsation modes are
favoured. In stratified white dwarf stars, the steep gradient of mean molecular weight be-
tween layers of H, He and C/O modifies the character of some modes and may select modes.
In the stochastically excited pulsators it is the modes that have natural frequencies near to the
characteristic time-scale for the convective motions that are excited.

So there is understanding of mode selection, but in many stars the precise answer for why
those particular modes are excited is not known, or is incompletely understood. Of course,
some physical characteristic of the star is selecting the modes that are excited, or not damped,
as the case may be, and a determination of that selection mechanism will allow us a clearer,
more detailed look at the interior of the star.

And that, of course, is the goal of asteroseismology.

7 Conclusion: Some selected results from asteroseismol-

ogy

We have had a good look at what pulsating stars look like, and how asteroseismology probes
their interiors. To go beyond the general descriptions of stellar pulsation, to put those descrip-
tions to use so we can see better what they mean, I finish this paper with a presentation of
a small, personal (and possibly idiosyncratic) sample of some recent interesting asteroseismic
studies. Asteroseismology is rich with successes, and these are but a sampling of a few.

7.1 Solar-like oscillators: α Centauri

For decades searches for solar-like oscillators were made with many claims of discoveries, all
of which were later dismissed as over-interpretation of noise. Kjeldsen et al. (1995) claimed
to have discovered solar-like oscillations in the G0 subgiant star η Bootis, but with all the
false alarms that had preceded this claim, it was not fully believed until it was confirmed by
Kjeldsen et al. (2002) some years later. In retrospect, this was the first detection of a solar-
like oscillator. In the meantime definitive detection of solar-like oscillations was announced for
β Hydri (Bedding et al. 2001) and confirmed by Carrier et al. (2001).

Now there are many solar-like oscillators known, with a rapid pace of discovery of more of
them. The best data set currently available is for α CenA. Bedding et al. (2004) have analysed
data obtained by Butler et al. (2004) for α CenA and found the expected comb of p-mode
frequencies reminiscent of that of the sun seen in the BiSON data in Fig. 8. They find a large
separation of ∆ν0 = 106.2µHz and have even succeeded in partially resolving the ` = 0, ` = 2
even modes and the ` = 1, ` = 3 odd modes for estimates of the small separations, δν02 and



δν13, as seen with more resolution for the sun in the GOLF data in Fig. 9. Part of the resolution
problem for α CenA is that the mode lifetimes are only of the order of 2 d. The noise level
for the Butler et al. (2004) data is a stunningly low 1.9 cm s−1! Of course, this is about 40
times larger than the noise in the BiSON 9.5-yr data set in Fig. 8, but then α CenA is nearly
1011 times fainter than the sun and the observations only covered a few days, not 9.5 yr. The
precision for the α Cen data is about what the solar astronomers were getting 20 years ago, so
this is the state of the art in asteroseismology of solar-like stars. Miglio & Montalbán (2005)
give an extensive discussion of their modelling the αCen system using seismic and other data.

7.2 Planet finding and asteroseismology

The discovery of planets around other stars is an important field in astronomy and is certainly
big news. Everyone is interested in these discoveries and the real race is to find Earth-like
planets, since our own origins and uniqueness (or not, as the case may be) are of prime concern
to us. The main technique for discovering planets and for asteroseismology of many types of
stars is high precision spectroscopy to obtain the highest possible precision radial velocity mea-
surements. For this purpose both fields need highly efficient spectrographs and large telescopes.
Asteroseismology has the even more stringent need for high time resolution. With the combined
demands of high spectral resolution, high time resolution and high signal-to-noise ratio, even
for very bright stars observers working with 8-m telescopes are wanting even bigger apertures.
Big apertures are needed just as much as for faint object work, but for different reasons.

Over 10 years ago when the first extra-solar planet was discovered orbiting 51Peg with an
orbital period of only 4.2 d, another study suggested that there was no planet at all – that line
profile variations could be detected in the spectrum of 51Peg. The Doppler shift of a star in
reflex to an orbiting planet will not change line shape, but stellar pulsation can do so. The
implications of the suggested line profile variability for 51Peg was that it was pulsating in a
g-mode with a period of 4.2 d. As 51Peg is very similar to the sun, and g-modes in the sun
are long-sought and long-desired for their ability to probe the solar core, this was an exciting
suggestion to asteroseismologists. But it was a horrifying thought to the planet finders, and it
generated a lot of excitement. In the end, the line profile variations were not confirmed, and
the planet survives (along with a rapidly growing list now of over 150 extra-solar planets9).
Unfortunately for asteroseismology, there are still no g-modes known in solar-type stars, or in
the sun.

The two fields of extra-solar planet finding and asteroseismology work hand-in-hand, both
with the technique of ground-based high precision radial velocity studies, and with photometry
from satellites – MOST, the Canadian photometric satellite, is in orbit and COROT, the
French-led mission is to be launched in 2006. But already there is a fascinating cross-over star:
µArae (Bazot et al. 2005; Bouchy et al. 2005). This star has at least three planets - two gas
giants, and a third which is estimated to have a mass of only 14 Earth masses. And it is a
solar-like oscillator with over 40 identified modes of degree ` = 0 to 3 with a large separation
of ∆ν0 = 90µHz. This is a very exciting object in both fields of research.

7.3 roAp stars

The rapidly oscillating Ap (roAp) stars are H-core-burning SrCrEu peculiar A stars with Teff in
the range of about 6600K to 8500K that pulsate in high overtone p-modes with periods in the
range 5.65 − 21min. There are 35 of them known as of late-2005. They are amongst the most

9See: http://www.obspm.fr/encycl/cat1.html



Figure 12: These panels show the line profiles for Hα and Nd iii 6145Å for HD12932 in the left
panel of each row. The centre and right panels of each row show the amplitudes and phases of
the pulsation as a function of depth in the line, obtained from least squares fits of the principal
pulsation frequency to the RV variations of the line bisector at each depth. Where the error
bars cannot be seen, they are smaller than the data points.

peculiar stars known and even include among their numbers the extreme case of HD101065,
arguably the most peculiar star known.

Radial velocity studies of the pulsations in these stars provide new constraints on their
atmospheric structure and element stratification, since the pulsation modes can be resolved in
three dimensions as can be done for no other star but the sun. Because of element stratification,
Fe is concentrated in the observable layer between −1 ≤ log τ5000 ≤ 0 and ions of the rare earth
elements Pr and Nd are concentrated above log τ5000 ≤ −5, while the narrow core of Hα, forms
at continuum optical depths of about −5 ≤ log τ5000 ≤ −2. Thus it is that for the roAp
stars we can resolve the pulsation behaviour as a function of optical depth over a large range,
−5 ≤ log τ5000 ≤ 0 and possibly even higher.

Fig. 12 shows how the pulsation amplitude in the roAp star HD12932 increases with height
in the atmosphere through the Hα line-forming layer, then decreases again above that in the
layer where the Nd iii 6145 Å line forms. Theoretical models of roAp star atmospheres are not
yet able to model as high in the atmosphere as the layer of formation of the Nd iii lines, hence
the turn-over and then decrease in velocity is a surprise. See, for example, the top panel of
Figure 8 in Saio (2005) where the amplitude of the pulsation simply increases through this
layer.

The roAp stars are oblique pulsators: Their pulsation modes are aligned with strong, global
magnetic fields that are themselves inclined to the rotation axis of the star, so that over a
rotation period it is possible to see the pulsation mode from varying aspect. This is a unique
property of these stars that allows a detailed study of the character of their pulsation. One
of the best-studied roAp stars is HR3831. Photometric studies show that its single pulsation



mode is aligned with its magnetic axis and is distorted from a simple dipole ` = 1 mode (see
Kurtz et al. 1997). Kochukhov (2005) has analysed several spectral lines in detail over the
2.85-d rotation period of this star and made the first-ever 3-D map of the pulsation for any
nonradially pulsating star. Thus, there is rich information in the roAp stars and their future
study promises many new discoveries.

7.4 White dwarf pulsators

White dwarf variables are high overtone g-mode pulsators and are the current champions of
asteroseismology. They have more frequencies detected than any other type of pulsating star,
other than the sun, and theory has been more successful in extracting astrophysical information
for them than for any other kind of pulsator. As can be seen in Fig. 11 there are three main
regions of white dwarf pulsation: The DOV, DBV and DAV stars, where the nomenclature is
D = white dwarf; V = pulsating variable; and O, B and A refer to spectra that resemble O, B
and A stars in the presence of He and H lines.

The best studies of pulsating white dwarfs have been carried out by the Whole Earth Tele-
scope, WET. The WET website contains a wealth of information and references to published
papers from many extended coverage (Xcov) campaigns10. An outstanding example is their
study of the DOV star PG1159-035 (Winget et al. 1991) where they found 101 independent
pulsations modes. Models yielded a mass of M = 0.586 ± 0.003M�; independent tests using
distances determined from parallaxes and the mass-radius relation indicate that the quoted
precision is probably correct. The periods in PG1159 are in the range 385 ≤ P ≤ 1000 s;
they are high-overtone (n >> `) g-mode pulsations, as is the case for other pulsating white
dwarfs. Asymptotic theory gives a clear prediction of period spacing for such stars (cf. eq. 10
in Section 4.5), and deviations from that are used to derive the compositional stratification in
their atmospheres, i.e. the mass of the surface He and/or H layers - possibly even resolving
He3 and He4 layers (Wolff et al. 2002). PG1159 clearly shows ` = 1 and 2 modes, but not
` = 3. The magnetic field strength is less than 6000G – a very small value for a white dwarf
star where field strengths are often MG. Clearly asteroseismology of white dwarf stars is highly
successful in extracting astrophysically interesting information.

One of the more striking properties of white dwarfs being studied by asteroseismology now is
the C/O interior composition and the potential crystallisation of the core in the most massive of
the DAV stars, such as BPM37093 (intensively studied by WET; see Kanaan et al. 2005), into
Earth-sized “diamonds” (see Metcalfe et al. 2004). These new kinds of “diamonds” are C and
O in a partial to complete crystalline state of degenerate matter; this state of matter has been
(briefly) produced experimentally using petaWatt lasers at Lawrence Livermore Laboratory.
So next time you think of “Twinkle, twinkle, little star . . .”, think about the bizarre reality of
diamonds in the sky.

Perhaps even more interestingly (if there can be something more interesting than an Earth-
sized diamond!), white dwarfs produce much of their total radiation in neutrinos; for the
very hot white dwarfs the neutrino flux exceeds the photon flux. Some of the neutrinos are
brehmsstrahlung neutrino pairs from electrons, but most are plasmon neutrinos that are cre-
ated by photons that have an effective rest mass when travelling through the dense plasma in
the white dwarf and can decay into neutrino-antineutrino pairs. Thus the cooling rate for white
dwarfs is a measure of the neutrino generation rate and asteroseismology can test the cooling
rate. This field is young; see O’Brien & Kawaler (2000) for a first attempt at a test of standard
lepton theory in a dense plasma from asteroseismology of the DOV star PG0122+200.

10http://wet.physics.iastate.edu/



7.5 sdBV stars

The sdBV stars are both p-mode pulsators (the EC14026 stars) and g-mode pulsators (the
PG1716+426, or Betsy stars). They are extreme horizontal branch stars, essentially He stars
with very thin H surface layers. Their pulsation periods are typically 100 − 200 s, although
periods up to 500 s are known, for the EC14026 stars; and 45min to 2 hr for the Betsy stars.
Their photometric amplitudes are typically only a few percent, although in the case of PG1605
it is as high as 0.2mag. They were discovered observationally (Kilkenny et al. 1997) and
predicted theoretically (Charpinet et al. 1996) independently, and at the time.

One of the most exciting of the sdBV stars is PG 1336−018. This star is a multi-periodic,
high overtone g-mode pulsator with periods in the 170− 200 s range, and is an eclipsing binary
with an orbital period of 2.42 hr. The combination of the short pulsation period and the eclipses
makes the light curve of this star particularly striking. See Figure 1 of the WET campaign on
this star in Kilkenny et al. (2003).

In the second chapter of the well-known textbook, Nonradial Oscillations of Stars (Unno et
al. 1996) the authors discuss the advantages of finding nonradial pulsators in eclipsing binary
systems, since the change in amplitude and possibly phase during the eclipse potentially allows
the mode to be identified. Also, pulsating stars in close binary systems offer the possibility to
study tidally induced oscillations. Both of these make PG1336−018 a particularly interesting
object.

To see what detailed information is being extracted asteroseismically from sdBV stars,
Charpinet et al. (2005) have studied PG1219+534 and derived many important parame-
ters, including its mass (M = 0.457 ± 0.012M�) and the mass of the residual H atmosphere
(log Matm/Mtotal = −4.25 ± 0.15), showing that this really is a He star with very little H left.
The lack of rotationally split m-modes even suggests that the star is rotating very slowly.
The modes are identified as consecutive overtones of degree ` = 0, 1, 2, 3. Thus, exceptional
knowledge of this important stage of stellar evolution is illuminated by asteroseismology.

7.6 β Cephei stars

Fig. 11 shows that the β Cep stars are B0 – B2 main sequence stars; they pulsate mostly in
p-modes, but also in g-modes. Remarkable studies of two β Cep stars have recently been made.
Aerts et al. (2003) found for HD129929 six frequencies: three were identifiable as the m-modes
of a dipole triplet, and from the frequency spacings two were identified as two m-modes of a
quadrupole quintuplet, and one was a radial mode. Models of these modes show that from
the different spacing of the rotationally split modes, the core must be rotating faster than the
surface. This is the first detection of differential rotation with depth for any star other than
the sun. The authors were also able to make an estimate of the amount of overshooting in the
convective core.

The β Cep star ν Eri has been studied for decades (Aerts et al. 2004; Jerzykiewicz et
al. 2004; De Ridder et al. 2004), showing the presence of both p-modes and g-modes, with
rotationally split m-mode triplets. From these observations Pamyatnikh et al. (2004) found
an increased core rotation rate compared to the surface rate, as in HD129929. Ausseloos et
al. (2004) have modelled these same observations and found that no standard B star model
can explain the pattern of observed frequencies in this star. An increase in the Fe abundance,
perhaps throughout the star is needed. Thus the β Cep stars are yielding some of their interior
secrets better than any other type of pulsating star.



8 A last word

Eddington’s “appliance” to look beyond the barrier of stellar surfaces and see the interiors
of stars is asteroseismology. The secrets it has revealed already are stunning, but the field is
young, and, no doubt, the best is yet to come.
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Aerts, C., Thoul, A., Daszyńska, J., Scuflaire, R., Waelkens, C., Dupret, M. A., Niem-
czura, E., & Noels, A. 2003, Science, 300, 1926

Aerts, C., et al. 2004, MNRAS, 347, 463
Ausseloos, M., Scuflaire, R., Thoul, A., & Aerts, C. 2004, MNRAS, 355, 352
Bazot, M., Vauclair, S., Bouchy, F., & Santos, N. C. 2005, A&A, 440, 615
Bedding, T. R., et al. 2001, ApJL, 549, L105
Bedding, T. R., Kjeldsen, H., Butler, R. P., McCarthy, C., Marcy, G. W., O’Toole, S. J.,

Tinney, C. G., & Wright, J. T. 2004, ApJ, 614, 380
Bouchy, F., Bazot, M., Santos, N. C., Vauclair, S., & Sosnowska, D. 2005, A&A, 440, 609
Butler, R. P., Bedding, T. R., Kjeldsen, H., McCarthy, C., O’Toole, S. J., Tinney, C. G.,

Marcy, G. W., & Wright, J. T. 2004, ApJL, 600, L75
Brewer, E. C., 1894, Dictionary of Phrase and Fable
Carrier, F., et al. 2001, A&A, 378, 142
Charpinet, S., Fontaine, G., Brassard, P., & Dorman, B. 1996, ApJL, 471, L103
Charpinet, S., Fontaine, G., Brassard, P., Green, E. M., & Chayer, P. 2005, A&A, 437,

575
Christensen-Dalsgaard, J. 1976, MNRAS, 174, 87
Christensen-Dalsgaard, J. 1993, ASP Conf. Ser. 42: GONG 1992. Seismic Investigation

of the Sun and Stars, 42, 347
Christensen-Dalsgaard, J. 2002, Reviews of Modern Physics, 74, 1073
De Ridder, J., et al. 2004, MNRAS, 351, 324
Eddington, A. S. 1926, The Internal Constitution of the Stars, Cambridge: Cambridge

University Press, 1926
Gough, D., Leibacher, J. W., Scherrer, P., & Toomre, J. 1996, Science, 272, 1281
Jerzykiewicz, M., Handler, G., Shobbrook, R. R., Pigulski, A., Medupe, R., Mokgwetsi,
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